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INTRODUCTION: Fusarium head blight (FHB)
is a fungal disease that devastates global wheat
production, with losses of billions of dollars
annually. Unlike foliar diseases, FHB occurs
directly on wheat spikes (inflorescences). The
infection lowers grain yield and also causes
the grain to be contaminated by mycotoxins
produced by the Fusarium pathogen, thus im-
posing health threats to humans and livestock.
Although plant breeders have improved wheat
resistance to FHB, the lack of wheat strains
with stable FHB resistance has limited progress.

RATIONALE:Many genetic loci in wheat affect
FHB resistance but most only have minor

effects; only a few exhibit a stablemajor effect
on resistance. Wheat relatives in the Triticeae
tribe carry resistant genes to different diseases
including FHB and thus can be alternative
sources of FHB resistance for wheat breed-
ing. Thinopyrumwheatgrass has been used
as a source of beneficial genes transferable
to wheat by distant hybridization breeding
since the 1930s. Fhb7, a gene transferred from
Thinopyrum to wheat, showed a stable large
effect on FHB resistance. However, the lack of
a Thinopyrum reference genome hampered
gene cloning andmarker development, delay-
ing the use of Fhb7 in wheat breeding. Here,
we cloned Fhb7 using a reference assembly

that we generated for Th. elongatum and char-
acterized its resistance mechanisms and evo-
lutionary history.

RESULTS: Using sequence data from Th.
elongatum, we assembled the Triticeae E
reference genomewith 44,474 high-confidence
genes annotated. Using this reference, we
genetically mapped Fhb7 and located it to a
245-kb genomic region.We determined a gene

encoding a glutathione
S-transferase (GST) asFhb7
by virus-induced gene si-
lencing and evaluated
mutants and transgenic
plants.Wediscovered that
Fhb7 detoxifies pathogen-

produced trichothecene toxins by conjugating
a glutathione (GSH) unit onto the epoxide
moieties of type A and B trichothecenes. Fhb7
GSThomologs are absent in theplant kingdom,
but one sequence showing ~97% identity with
Fhb7 was found in endophytic fungi of an
Epichloë species that establishes symbiosis
with temperate grasses. This result suggests
that Fhb7 might have been transferred from
Epichloë to Th. elongatum through horizontal
gene transfer. Finally, we demonstrated that
Fhb7, when introgressed into diverse wheat
backgrounds by distant hybridization, confers
broad resistance to both FHB and crown rot
without penalizing wheat yield. Our results
suggest a source of Fusarium resistance for
wheat improvement.

CONCLUSION: Th. elongatum carries biotic and
abiotic resistance genes and is a useful re-
source for wheat breeding. The assembled
Th. elongatum reference genome can aid iden-
tification and cloning of such genes for wheat
improvement. Cloning of Fhb7 revealed that it
encodes a GST that can detoxify trichothecene
toxins. Thus, Fhb7 resistance differs from Fhb1
resistance, which depends on a reduction of
pathogen growth in spikes, although both
confer durable resistance. The ability of Fhb7
to detoxify multiple mycotoxins produced by
various Fusarium species demonstrates its
potential as a source of resistance to the various
diseases for which Fusarium trichothecenes
are virulence factors. The deployment of Fhb7
in commercial wheat cultivars could alleviate
both the food safety issue for consumers and
the yield loss problem for growers. Sequence
homologies between fungal and plant Fhb7
suggested that horizontal gene transfer may
help to shape plant genomes.▪
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Fhb7 confers FHB resistance by detoxifying trichothecenes. (A) Fhb7 in Th. elongatum genome likely
came from an Epichloë fungus through horizontal gene transfer. Fhb7 drives FHB resistance when introgressed
from Thinopyrum into wheat. (B) Fhb7 encodes a GST that detoxifies Fusarium-produced trichothecenes by
conjugating GSH (blue) to the epoxy group (red). R1 to R5 refer to the variable groups in trichothecenes.
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Fusarium head blight (FHB), a fungal disease caused by Fusarium species that produce food toxins,
currently devastates wheat production worldwide, yet few resistance resources have been discovered
in wheat germplasm. Here, we cloned the FHB resistance gene Fhb7 by assembling the genome of
Thinopyrum elongatum, a species used in wheat distant hybridization breeding. Fhb7 encodes a
glutathione S-transferase (GST) and confers broad resistance to Fusarium species by detoxifying
trichothecenes through de-epoxidation. Fhb7 GST homologs are absent in plants, and our evidence
supports that Th. elongatum has gained Fhb7 through horizontal gene transfer (HGT) from an endophytic
Epichloë species. Fhb7 introgressions in wheat confers resistance to both FHB and crown rot in diverse
wheat backgrounds without yield penalty, providing a solution for Fusarium resistance breeding.

W
heat (Triticum aestivum L.) is a lead-
ing source of calories for the human
population (1). The prevalence and
widespread outbreaks of the devas-
tating Fusarium head blight (FHB)

disease, exacerbated by recent changes in
climate and certain cropping practices, has
posed a threat for global wheat production
and food safety. Fusarium species cause not
only FHB in wheat, barley, and oat, but also
crown rot in wheat and ear rot in maize. How-
ever, F. graminearum is the prominent patho-
gen of wheat FHB in China, the United States,
Canada, Europe, and many other countries
(2). Fusariumproduces epoxy-sesquiterpenoid
compounds known as trichothecenes, some
examples of which are deoxynivalenol (DON),
T-2 toxin, HT-2 toxin, and nivalenol (NIV),
among others; these compounds are inhib-

itors of protein synthesis and virulence factors
for pathogenicity (2). Trichothecene contami-
nation in cereal grain results in immunotox-
icity and cytotoxicity in humans and animals
and thus has aroused public safety concerns
(3). Despite global screening efforts examining
tens of thousands of wheat accessions, a lim-
ited number of quantitative trait loci (QTLs)
have been verified to confer a stable effect on
FHB resistance (4). Fhb1 on chromosome 3B is
the only QTL that has been used in breeding
programs worldwide. Although it has been
cloned from different Chinese wheat sources,
its molecular identity and resistance mecha-
nisms remain equivocal (5–8).
Wheat relatives have proven to be alterna-

tive sources for improvement of resistance to
both biotic and abiotic stresses in wheat (9).
Distant hybridization, the practice of making
crosses between two different species, genera,
or higher-ranking taxa, makes it possible to
transfer alien genes from Triticeae tribe rela-
tives to wheat (9–11). Tall and intermediate
wheatgrasses of the Thinopyrum genus (forage
grasses) are sources of resistance to salinity,
drought, and disease for wheat. Several dis-
ease resistance genes, including stem rust
(e.g., Sr24, Sr25, Sr26, Sr43, Sr44, and SrB),
leaf rust (Lr19, Lr24, Lr29, and Lr38), pow-
dery mildew (Pm40 and Pm43), barley yellow
dwarf virus (Bdv2 and Bdv3), and Fusarium
head blight (Fhb7), have been introduced from
Thinopyrum into wheat for resistance breeding
(10, 12–16).
Fhb7 is a QTL introduced from Thinopyrum

elongatum and shows a similar effect on FHB re-

sistance asFhb1.Th. elongatum (syn.Agropyron
elongatum or Lophopyrum elongatum), a
grass of the Triticeae family with a diploid E
genome (2n = 2x = 14), is native to Eurasia
and is thought to be a genome donor species
for various tetra-, hexa-, and even decaploid
species in the Thinopyrum genus (14). The lack
of a reference sequence for the E genome has
impeded the process of cloning and the de-
velopment of diagnosticmarkers for thedeploy-
ment of Fhb7 and other E genome–derived
resistance genes. Here, we report the assembly
of a reference genome for Th. elongatum and
describe the cloning and biomolecular charac-
terization of Fhb7. Using the newly assembled
Egenome reference,we identified aGSTgene as
a candidate for Fhb7 by map-based cloning and
confirmed its function in FHB resistance using
transgenics. Fhb7 can detoxify trichothecenes
by catalyzing the conjugation of a glutathione
(GSH) unit onto their toxic epoxide moiety.
Fhb7’s coding sequence has no obvious homol-
ogy to any known sequence in the entire plant
kingdom but shares 97% sequence identity
with a species of endophytic fungus (Epichloë
aotearoae) known to infect temperate grasses,
which provides evidence that Fhb7 in the
Th. elongatum genomemight be derived from
the fungus through HGT. We demonstrate
here that Fhb7 confers resistance to both FHB
and crown rot without yield penalty inwheat.

Results
Th. elongatum genome assembly and evolution

To sequence and assemble the genome of
Th. elongatum, 1.1 Tb of high-quality sequence
reads were generated from a series of li-
braries, which is about 236× coverage of the
Th. elongatum genome (table S1). We initially
assembled the short sequence reads using
DeNovoMAGICTM3.0 software (NRGene) and
then filled the gaps using ~145 Gb (~31×)
PacBio SMRT reads. The initial assembly was
finely tuned using high-quality paired-end
polymerase chain reaction (PCR)–free reads.
Two Bionano optical maps (based on enzymes
BspQI and DLE1 data) were further used to
extend the scaffolds (tables S2 and S3), which
resulted in a 4.63-Gb assembly with a contig
N50 size of 2.15Mb and a scaffold N50 size of
73.24 Mb (Table 1).
To construct the pseudochromosomes, high-

throughput chromosome conformation cap-
ture (Hi-C) data were used to categorize and
order the assembled scaffolds (table S4). A total
of 141 scaffolds were anchored and oriented
onto seven pseudochromosomes, which ac-
count for 95% of the estimated genome size
(4.78 Gb; fig. S1) and 98% of the assembled
genome sequences (fig. S2). About 97.6%
complete and 1.3% fragmented Embryophyta
genes were detected in our assembly accord-
ing toBUSCO [BenchmarkingUniversal Single-
Copy Orthologs (17)], proportions comparable
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to other Triticum genomes (table S5). The
quality of the E genome assembly was vali-
dated by assessment of the long terminal re-
peat (LTR) completeness using LTRAssembly
Index (LAI) software (18) (table S6), by ge-
nomic alignment with 61 randomly selected
bacterial artificial chromosome (BAC) clones
(fig. S3 and table S7), and by the consistency
of our assembly with a high-density genetic
map from a hexaploid Thinopyrum species
(19) (fig. S4).
Repetitive elements are dispersed through-

out the E genome, with ~81.29% of the Th.
elongatum assembly being annotated as re-
petitive elements, including retrotransposons
(62.39%), DNA transposons (17.83%), and un-
classified elements (1.07%) (table S8 and table
S9). Analysis of the Cereba and Quinta LTR
retrotransposons supported that the centro-
mere regions were appropriately assembled
(fig. S5). The composition of different classes
of repetitive DNA in the E genome was sim-
ilar to those of the wheat A, B, or D sub-
genomes (fig. S6). No recent LTR burst was
detected in the E or common wheat genomes
(fig. S7), suggesting relatively stable genomes
and helping to explain the success of distant
hybridization breeding efforts using these
materials. A total of 44,474 high-confidence
protein-coding genes were predicted on the
basis of a combination of methods [ab initio,
protein homology based, andRNA-sequencing
(RNA-seq) based], and 44,144 (99.3%) of the
predicted genes were anchored onto the seven
assembled pseudochromosomes (figs. S8 and
S9 and tables S10 to S12).
Gene family analysis identified 32,048

orthologous genes between the E genome and
the wheat A, B, or D genome or the barley
genome (fig. S10). A synonymous substitution
rate (Ks) value was calculated using amoving-

averagemodelwith the ortholog dataset, which
revealed similar Ks peak values between the
E genome and the wheat subgenomes (E and
A: 0.0645, E and B: 0.0645, E and D: 0.062),
indicating a branching time for Th. elongatum
and Triticum of ~4.77 to 4.96million years ago
when a nucleotide substitution rate of 6.5*10−9

was used (Fig. 1A) (20).
We also compared the E genomewith other

Triticeae genomes that have been used for
distant hybridization based on a maximum
likelihood tree built using single-copy genes
from available Triticeae genome assemblies;
the tree also incorporated transcript data for
several diploid species, including the Triticeae
R,Q, V, F, andNs genomes (table S13). The three
wheat subgenomes are more closely related to
the E genome of Th. elongatum than they are
to the R genome of rye, another species fre-
quently used in wheat distant hybridization
(Fig. 1A). A syntenic block analysis indicated
genome-wide colinearity between the E ge-
nome and the A, B, or D genomes, which
helps to explain the success of E-genome–
based distant hybridization breeding in wheat
(Fig. 1B and data S1). Substantial colinearity
notwithstanding, we did identify 18 fragmen-
tal inversions between the E genome and the
wheat subgenomes, with sizes ranging from
1.5 to 18 Mb, which is supported by both the
Bionano maps and Hi-C data (fig. S11 and
table S14).

Map-based cloning of the Fusarium resistance
gene Fhb7

A total of 1897 resistance gene analogs (RGA)
were annotated in the E genome (fig. S12 and
table S15). An apparent RGA expansion, espe-
cially for CC-NBS-LRR (CNL), on the distal
end of the long arm of chromosome 7E (7EL)
is accompanied with the expansion of this

genomic region (fig. S13 and table S16). Some
of the alien resistance gene introgressions into
wheat are located in this region, includingLr19,
Sr25, Bdv3, and Fhb7 (10, 13, 14).
Previously, wemapped the Fhb7 to the distal

end of the 7EL (based on recombination be-
tween 7E1 and 7E2 in a common wheat back-
ground) using a recombinant inbred line (RIL)
population from a cross between an FHB-
susceptible substitution line (7E1/7D) and
an FHB-resistant substitution line (7E2/7D)
(13, 21). For further mapping of this gene, we
developed a segregation population derived
from BC6F1 with the same cross, in which FHB
resistance was tracked as monogenic trait for
validation of phenotypes. We also developed a
population to promote 7E recombination by
introducing the CS ph1bph1b locus (fig. S14).
Because of the semidominant nature of Fhb7,
the homozygous offspring of the recombinants
were evaluated for FHB resistance. With analy-
sis of 258 recombinants (between theXBE45653
and XsdauK67markers) screened from 19,200
progeny of BC6F1 population, we confirmed
that Fhb7 is positioned between theXSdauK79
and XSdauK80markers within an ~1.2-Mb re-
gion based on the E reference genome (Fig. 1C
and fig. S15).
Analysis of the RNA-seq data of E reference

genome from Th. elongatum spikes identified
eight expressed genes in theFhb7 region (Fig. 1C
and table S17). However, when conducting
transcriptomics analysis of the parental lines
of 7E1/7D (S) and 7E2/7D (R), we found that
only two candidate genes (Tel7E01T1020600.1
and Tel7E01T1021800.1) were expressed in a
manner specific to the 7E2 genome (the resist-
ant parent) and E reference genome [which
also confers FHB resistance (12, 22)] (Fig. 1C
and tables S18 and S19). BAC clones contain-
ing Tel7E01T1020600.1 were identified from
the resistant donor line and new markers
(XsdauK86 and XsdauK87) derived from the
BAC ends were developed to screen recombi-
nants among 5760 progeny of the segrega-
tion population harboring the CS ph1bph1b
locus (Fig. 1C, fig. S14, and table S20). Anal-
ysis of phenotypic data of the three key
recombinants verified that Fhb7 is located
between the XsdauK86 and XsdauK88mark-
ers, thereby delineating this locus to a 245-kb
region containing a single expressed gene:
Tel7E01T1020600.1 (Fig. 1C). This gene is
present in the E reference genome and 7E2
genome but absent in the susceptible 7E1
genome based on analysis of genomics and
transcriptomics data (table S19 and table S21).
Gene expression analysis using quantitative

PCR indicated that Tel7E01T1020600.1 was
constitutively expressed in all tissues examined,
including root, leaf, shoot, and spike (fig. S16).
Moreover, barley stripe mosaic virus (BSMV)–
induced gene silencing of Tel7E01T1020600.1
in wheat leaves revealed that it conferred
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Table 1. Summary statistics for Th. elongatum genome assembly.

Assembly characteristics Values

Estimated genome size 4.78 Gb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total length of contigs 4.58 Gb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

N50 length of contigs 2.15 Mb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total number of contigs 12,262
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Longest contigs 11.6 Mb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total length of scaffolds 4.63 Gb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

N50 length of scaffolds 73.24 Mb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total number of scaffolds 783
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Longest scaffolds 258.71 Mb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total gap size 52.78 Mb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Total sequences anchored to the pseudochromosomes 4.54 Gb
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Number of annotated high-confidence genes 44,474
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Percentage of repeat sequences 81.29%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Complete BUSCOs 97.6%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Fragmented BUSCOs 1.3%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Missed BUSCOs 1.1%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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resistance to F. graminearum, supporting that
this gene represents Fhb7 (fig. S17). Sequence
analysis of 22 ethylmethanesulfonate (EMS)–
induced mutants identified five amino acids
that were implicated in Fhb7’s FHB resistance–
related function: S34F, T48I, A98V, A9V, and
P106L (fig. S18 and data S2). Moreover, two
stop-gain mutations at position 209 or 243 led
to reduced resistance to F. graminearum (fig.
S18 anddata S2). To confirmTel7E01T1020600.1
as Fhb7, we transgenically introduced a con-
struct with the native promoter and the
846–base pair (bp) coding sequence of this
gene into the FHB-disease–susceptible wheat
cultivar KN199 and assessed three indepen-

dent T3-transgenic plants. The Fusarium-
inoculated transgenic plants exhibited lower
FHB symptom with substantially fewer dis-
eased spikelets per spike than the control
(Fig. 1D).

Evolutionary history and molecular function
of Fhb7

Protein domain–based functional annotation
predicted that Fhb7 likely encodes a GST en-
zyme. A BLAST search of the Fhb7 sequence
against the National Center for Biotechnology
Information (NCBI)GenBankdatabase (23) did
not find any homolog of Fhb7 in the Triticum
genus or in the entire plant kingdom. How-

ever, there is a homolog sharing 97% identity
in the genome of E. aotearoae (Fig. 2A and fig.
S19). A phylogenetic analysis of the Fhb7 se-
quence revealed its distribution amongEpichloë
species, endophytic fungi of temperate grasses
(Fig. 2A). Thus, the occurrence of the Fhb7 gene
in the Th. elongatum genomemight be caused
by fungus-to-plant HGT (FP-HGT) event. Be-
cause the Fhb7 locus is present both in the
diploid E genome of Th. elongatum and in
7E2 fromdecaploidTh. ponticum, this FP-HGT
event apparently occurred after the divergence
of the E genome from Triticum sp. but before
the formation of the decaploid Th. ponticum
(Fig. 2A).
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Fig. 1. Genome evolution of Th. elongatum and cloning of Fhb7. (A) Maximum
likelihood phylogenetic tree of the genomes of Triticeae species and the Ks
distributions of ortholog genes between the E genome and the wheat Chinese
Spring A, B, and D subgenomes. mya, million years ago. (B) Syntenic blocks
between the E genome and the three wheat subgenomes. The representative
inversion fragment is indicated in green; chromosomal translocations for the wheat
A subgenome compared with the E genome are also indicated in blue. (C) Map-
based cloning of Fhb7 at the distal region of chromosome 7E. Using the BC6F1
population derived from the cross between two wheat-Thinopyrum substitution lines,
7E1/7D and 7E2/7D, Fhb7 was initially mapped to an interval between the markers
XsdauK79 and XsdauK80 (~1.2 Mb on the E reference genome) (second bar from
the top). The expressed genes are labeled as follows: gray refers to no expression in
the E reference genome; blue refers to E reference genome–specific expression;

orange refers to expression in the E reference, 7E1 and 7E2 genomes; red refers
to expression in FHB-resistant donor genomes of 7E2 and E reference (third bar
from the top). BAC clones containing Tel7E01T1020600.1 were identified from
the substitution line 7E2/7D, based on which genetic markers (XsdauK86
and XsdauK87) were developed for recombinant screening of the CS ph1bph1b
population. Finally, Fhb7 was genetically confirmed within a 245-kb region between
markers XsdauK86 and XsdauK88, with only the candidate gene Tel7E01T1020600.1
encoding a GST [CDS is shown in red; untranslated region is shown in gray]
(fourth bar from the top). (D) FHB was evaluated for wild-type (WT, KN199) and
transgenic wheat KN199 expressing the native promoter and the 846-bp open
reading frame of Fhb7. T3 plants containing Fhb7 from three different lines were
evaluated for FHB resistance using single floret inoculation (35). The FHB was scored
for at least five spikes per repeat, with at least three repeats for each transgenic line.
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The horizontal transfer of theFhb7 sequence
did not occur as a part of a gene cluster (pre-
suming that it is from E. aotearoae as the
donor genome; this is the species harboring
the closest identified homolog of Fhb7) (fig.
S20). On the basis of sequence similarity, the
sequence was transferred into the diploid E
genome as a short fragment, including the
846-bp coding sequence for Fhb7, a 32-bp
sequence before the start codon, and a 19-bp
sequence after the stop codon (Fig. 2B). At the

position 535 bp upstream of Fhb7’s start codon
in theE genome, another 90-bp sequence shows
high identity to a sequence in E. aotearoae (Fig.
2B), suggesting the possibility that a larger se-
quencewas initially transferred toTh. elongatum
but late mutations occurred in the transferred
sequence. The insertion of theEpichloë genome
fragment in the E genome was also identified
in a BAC clone harboring Fhb7 (Fig. 1C anddata
S3), confirming that the sequence is not an
artifact from the genome assembly process.

Phylogenetic analysis of the GST superfamily
showed that Fhb7 belongs to the fungal GTE
(glutathione transferase etherase–related)
subfamily (fig. S21 and tables S22 and S23),
wherein allmembers contain aLigEdomain, but
none of which has been functionally charac-
terized to date (24). The Fhb7 gene is conserved
inEpichloë species and inmultipleThinopyrum
species, emphasizing its role in protecting
organisms from the cytotoxic damage caused
by Fusarium species (Fig. 2A and fig. S20).
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Fig. 2. Fhb7 confers FHB resistance by detoxifying DON. (A) Maximum
likelihood phylogenetic tree of the closest homologs of Fhb7 from plants and fungi.
The DNA sequence similarity with Fhb7 is marked in red. (B) Horizontal gene transfer
of Fhb7. The transcripts CDS (purple), and possible untranslated regions (yellow)
of Fhb7 are shown along chromosome 7E, and the sequence sharing high similarity
with the E. aotearoae genome is presented as a gray block. The genomic fragment
(897 bp) containing full CDS and partial untranslated region of Fhb7 showed
97% identity between the two genomes. (C) DON tolerance of Fhb7-transgenic
wheat. Seedlings (4 days old) were moved to a petri dish containing 25 mg L−1 DON
and seedling length was evaluated 7 d after the DON treatment at room temperature.
(D) Extracted ion chromatograms (EICs) at m/z 604.2173 revealing the presence
of two DON-glutathione adducts. The Fhb7 NIL, Fhb7-transgenic wheat, and

Fhb7-transgenic yeast (P. pastoris) cultures were treated with 25 mg L−1 DON for
24 hours. A product that elutes at 1.68 min accumulated in Fhb7(+) samples
and a known, nonenzymatically produced DON-glutathione adduct product that
elutes at 2.4 min accumulated in the corresponding Fhb7(–) control samples.
(E) Relative abundances of the de-epoxidated Fhb7-catalyzed DON-glutathione
(green) adduct and the known nonenzymatic DON-glutathione adduct (blue) in
spikes of Fusarium-challenged NIL plants contrasting in Fhb7. After inoculation of
F. graminearum on spike glumes, the Fhb7(+) NIL accumulated a copious amount of
de-epoxidated DON-glutathione adduct. By contrast, the DON substrate reduced
the accumulation in Fhb7(+) NIL compared with that in Fhb7(–) NIL, as shown in the
bottom bar chart. (F) Molecular structure of the de-epoxidated DON-glutathione
adduct catalyzed by Fhb7.
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Gene expression analysis in a time course of
Fusarium infection in Th. elongatum and the
7E2/7D substitution line (table S18) showed
that the transcription levels of Fhb7 were in-
duced at 48 hours after infection (fig. S22).
Research in plant pathology about the pro-

gression of F. graminearum infection inwheat
has established that the fungus starts to pro-
duce its DONmycotoxin, an inhibitor of protein
synthesis that targets ribosomal machinery,
by the 48-hour infection time point (25). We
therefore conducted DON assays on wheat
seedlings of the 7E2/7D substitution line. The
results showed that the expression of Fhb7
can be induced within 6 hours after DON
treatment (fig. S22), suggesting that this pu-
tative GST enzyme may have a role in xeno-
biotic detoxification. To test this hypothesis,
we conducted a growth inhibition assay by
growing Fhb7 near-isogenic lines (NILs) and
Fhb7-transgenic wheat seedlings inmedia con-
taining DON and found that the plants with
Fhb7 grew better (assessed as seedling length)
than the plants without Fhb7 (Fig. 2C and fig.
S23). We also expressed Fhb7 in yeast to test its
growth on DON-containing media and found
that both the Fhb7(+) and Fhb7(–) yeasts grew
well in the absence of DON; however, only the
Fhb7(+) yeast grew normally on the media
containing 400 mg L−1 DON (fig. S24).
Further evidence for the involvement of Fhb7

in detoxification was demonstrated by its di-
rect use of DON as a substrate.We treated the
seedlings of NILs, Fhb7-transgenic wheat, and
Fhb7-expressing yeast cultures with DON, and
found that the presence of Fhb7 in wheat
and yeast caused accumulation of a chromato-
graphic peak at 1.68 min, but the accumula-
tion was not detected in the corresponding
control samples without Fhb7 (Fig. 2D). This
peak had amass/charge (m/z) value of 604.2173
(± 3 ppm) under positive ion mode, which is
equal to the value for the molecule comprising
DON (296.1259), a glutathione group (307.0838),
andahydrogen atom (1.0078), therefore suggest-
ing that Fhb7 confers GST activity to form a
glutathione adduct ofDON (DON-GSH) (Fig. 2D
and fig. S25).
Previous studies on FHB- andDON-associated

chemistry (26, 27) using nuclear magnetic reso-
nance spectroscopy confirmed the nonenzy-
matic formation of a DON-GSH adduct that
was formed through a reaction with the double
bond at C10 on DON’s first planar ring. This
product was mainly detected in the DON-
treated Fhb7(–) yeast cultures and Fhb7(–)
wheat samples with the peak at 2.4 min (Fig.
2D and fig. S25). Although the two detected
DON-GSH isomers had identical m/z values,
tandem mass spectrometry with collision-
induced dissociation experiments unequivocally
supported that the Fhb7(+) samples produce
a de-epoxidated DON-GSH adduct (figs. S25
to S28); that is, the GSH group added by Fhb7

is attached to the C13 carbon, which disrupts
the epoxy group known to be critical in DON’s
toxicity (Fig. 2F) (28). Further, we used liquid
chromatography–high-resolution mass spec-
trometry (LC-HRMS) to profile DON-treated
spikes from 37 diverse wheat germplasm ac-
cessions and cultivars without Fhb7. We de-
tected the DON-GSH (C10) peak at 2.4 min
in all of these plants but did not detect the
1.68-minde-epoxidatedDON-GSH (C13) adduct
in any of them (fig. S29).
Fusarium species produce a series of tri-

chothecene mycotoxins, including DON, 3-
ADON, 15-ADON, T-2, HT-2, fusarenon-X, NIV,
diacetoxyscirpenol, and others, the distribution
of which varies among Fusarium chemotypes
(24, 26). Considering the common occurrence
of epoxy groups in these trichothecene com-
pounds, we hypothesized that Fhb7 may be
able to detoxify trichothecenes other thanDON.
Indeed, LC-HRMS analysis of trichothecene-
treated wheat samples revealed the presence
of GSH adducts for all the trichothecenes that
we tested in this study (figs. S30 to S37). In
light of Fhb7’s wide catalytic spectrum for these
mycotoxins, we investigated whether it can
confer resistance to other Fusarium chemo-
types, including F. pseudograminearum for
crown rot and F. asiaticum, a predominant
FHB-causing strain in south China. Assays
using detached wheat leaves showed that the
Fhb7-transgenic plants exhibited smaller lesions
thanwild-type plants for all the testedFusarium
species (fig. S38). F. pseudograminearum was
also inoculated on the base of wheat seedlings,
and the results confirmed that the transgenic
plants also exhibit improved crown rot resist-
ance comparedwith thenontransgenic controls
(fig. S39). These results further demonstrate
howTh. elongatumbenefits from Fhb7 through
the FP-HGT event, which protects plants from
Fusarium-caused cytotoxic damage by detox-
ifying trichothecene through de-epoxidation
(fig. S20).

Application of Fhb7 in Fusarium resistance
breeding

Considering Fhb7’s functionality, specifically
in the enzymatic conversion of trichothecenes,
we speculated that incorporating the Fhb7 locus
into wheat may confer resistance in different
genetic backgrounds without affecting yield
traits. Indeed, the translocation of a short frag-
ment [with ~16% of the 7E long arm (13)] on
wheat 7D resulted in wheat lines with broad
resistance to both FHB and crown rot (Fig. 3, A
to C). Detailed characterization of NILs (LX99
background) in field conditions showed no
significant difference in agronomic yield traits
(e.g., thousand grain weight, flag leaf length,
etc.; Fig. 3, D and E). Obvious yield penalty
caused by Fhb7 resistance was also not detected
when it was transferred into seven additional
genetic backgrounds (Fig. 3F and fig. S40).

These results demonstrated the advantages
of Fhb7-mediated resistance over other QTLs,
including high resistance to both FHB and
crown rot and detoxifying DONwithout yield
penalty, and thus highlighted the potential
utility of the Fhb7 locus in future wheat breed-
ing for improved FHB resistance and good
yield traits.

Discussion

Fusarium diseases are economically impactful
because of their effects on the production of
cereal crops. In this study, the successful cloning
of Fhb7 from the Triticeae E genome and char-
acterization of its molecular mechanism ad-
vances the knowledge on the essential role of
trichothecenes in the pathogenesis of Fusarium.
We have demonstrated that Fhb7 confers FHB
resistance in diverse wheat genetic backgrounds
without yield penalty and Fhb7 is able to bio-
chemically detoxify trichothecene mycotoxins
produced by multiple Fusarium species, which
highlights the value of Fhb7 in combating FHB
and reducingDONcontamination inwheat and
other cereal crops through breeding.
The epoxides at the C12/13 of trichothecene

mycotoxins are the key contributors to their
toxicity. However, to date, genes or proteins
with de-epoxidation function have not been
identified (3). Fusarium species can reduce
DON toxicity by adding an acetyl group on
the hydroxyl group at C3 and C15, forming
3-ADON and 15-ADON, respectively; however,
the reduction of cytotoxicity for these DON
derivatives is modest in plant cells (3). In
planta, glucosylation at C3 has been docu-
mented to detoxify DON by forming DON-
3-glucoside (D3G), which is reversible in
animals, causing release of DON during di-
gestion (29). Here, beyond our identification
of an FHB resistance gene, the broad detoxifi-
cation spectrumof Fhb7 throughde-epoxidation
of trichothecenes suggests the potential utility
of the GST enzyme in the biomedicine, feed,
and food industries in addition to reducing
DON content in wheat grain.
HGT, the transfer of genes between non-

mating species, is thought to occur frequently
in prokaryotes, but much less so in eukaryotes
(30). There is accumulating evidence illustrat-
ing instances of HGT events involving bacteria
or the organellar genomes of another plant as
donor (31). For instance, two Agrobacterium
geneswere found to be inserted in the genome
(with transfer DNA borders) of a cultivated
sweet potato [Ipomoea batatas (L.) Lam.], re-
vealing a naturally occurring transgenic food
crop (32). However, there is little evidence for
HGT events involving nuclear DNA trans-
mission from fungi or other eukaryotes, and
such transmission has been thought to be in-
significant (33). Fundamentally, our results
highlight the roles that FP-HGT has had in
shaping plant genomes, which advances the
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knowledge on disease resistance gene evolu-
tion and opens a new avenue for the identi-
fication of plant resistance genes.
The endophyticNeotyphodium andEpichloë

fungi often form mutualistic symbiotic asso-
ciations with forage grasses and offer hosts
bioprotective benefits against pathogens and
abiotic stresses, presumably owing to the
fungus-mediated anabolism and catabolism
of various natural product compounds (34).
Here, we showed that the GST encoded by
Fhb7 is conserved in Epichloë species and is
able to detoxify the trichothecene mycotoxins
secreted by Fusarium species. Thus, transfer
of this fungal gene into a plant genome could
be beneficial to plants, perhaps even eliminat-
ing the need for the symbiotic association per
se. The finding of Fhb7-mediated resistance to
both FHB and crown rot diseases further em-
phasizes the importance of this HGT in ben-
efiting the perennial Th. elongatum, which is

perhaps reflected by constitutive expression
of Fhb7 in all examined tissues. However, the
molecularmachinery that enabled the FP-HGT
of Fhb7 and the nature of the promoter evo-
lution underlying the expression of Fhb7 re-
main to be elucidated.

Methods summary

TheTh. elongatum genomewas first sequenced
by Illumina short-read sequencing and was
de novo assembled using the software pack-
age DeNovoMAGICTM3.0. PacBio SMRT long
reads were used to fill the gaps in the assem-
bly and Bionano optical maps were then used
to correct and extend the scaffold sequences.
The assemblywas anchored into seven pseudo-
chromosomes using Hi-C data. The assembly
was validated using independent BAC se-
quences, genetic maps of related species, and
commonly used software programs. Genes,
repetitive DNA, and other genomic features

in the assembly were annotated to reveal the
landscape of the species and to examine their
relationship with wheat and other related spe-
cies by in-depth comparative analyses. Genetic
markers in the Fhb7 region were developed
by means of the reference genome sequence
and used to screen recombinants for finemap-
ping to identify the Fhb7 candidate gene. The
candidate gene was functionally validated
by virus-induced gene silencing, EMS-induced
mutation, and transgenic approaches. FHB
resistance was evaluated by inoculation of
Fusarium conidial suspensions on wheat
spikes, leaves, or crowns. LC-HRMS(/MS) anal-
ysis was used to infer the biochemical structure
of trichothecene-glutathione adducts catalyzed
by Fhb7. Fhb7 was introgressed into diverse
wheat backgrounds using distant hybridization
and conventional breeding, and the presence
of alien chromatin in wheat was validated by
genomic in situ hybridization.
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Fig. 3. Application prospects for Fhb7 in wheat resistance breeding. (A) Genomic
in situ hybridization analysis (left panel) showing a translocation of the distal
region of 7E (containing Fhb7) from an E genome donor into wheat. Scale bar,
20 mm. Also shown are images of Fusarium-infected spikes (middle panel)
and crown rot (right panel) of LX99 NILs contrasting in Fhb7. (B) FHB resistance of
Fhb7 in eight different wheat genetic backgrounds evaluated at 21 d after inoculation
in field conditions. (C) Crown rot phenotypes were recorded as the death ratio
after growth in soil containing F. pseudograminearum at 30 days postinfection.

(D) Field plant photographs of two Fhb7(+) NILs and one Fhb7(–) NIL in the LX99
background. (E) Comparison of the yield traits among the two Fhb7(+) NILs and
one Fhb7(–) NIL in the LX99 background evaluated in the 2017 field experiment.
FLL, flag leaf length (cm); FLW, flag leaf width (cm); SL, spike length (cm); KPS,
kernels per spike; IS, infertile spikelets; GL, grain length (mm); GW, grain width
(mm); TGW, thousand grain weight (g). (F) Comparison of the grain yield among
eight Fhb7 translocation lines in different wheat genetic backgrounds. The grain yield
was measured from a 1-m2 plot in the 2017 and 2018 field experiments.

RESEARCH | RESEARCH ARTICLE
on July 1, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


REFERENCES AND NOTES

1. J. K. Haile et al., Fusarium head blight in durum wheat: Recent
status, breeding directions, and future research prospects.
Phytopathology 109, 1664–1675 (2019). doi: 10.1094/
PHYTO-03-19-0095-RVW; pmid: 31369363

2. F. Trail, For blighted waves of grain: Fusarium graminearum in
the postgenomics era. Plant Physiol. 149, 103–110 (2009).
doi: 10.1104/pp.108.129684; pmid: 19126701

3. A. Hathout, S. Aly, Biological detoxification of mycotoxins:
A review. Ann. Microbiol. 64, 905–919 (2014). doi: 10.1007/
s13213-014-0899-7

4. Y. Hao, A. Rasheed, Z. Zhu, B. B. H. Wulff, Z. He, Harnessing
wheat Fhb1 for Fusarium resistance. Trends Plant Sci. 25, 1–3
(2020). doi: 10.1016/j.tplants.2019.10.006; pmid: 31679993

5. E. S. Lagudah, S. G. Krattinger, A new player contributing to
durable Fusarium resistance. Nat. Genet. 51, 1070–1071
(2019). doi: 10.1038/s41588-019-0454-3; pmid: 31253973

6. G. Li et al., Mutation of a histidine-rich calcium-binding-protein
gene in wheat confers resistance to Fusarium head blight.
Nat. Genet. 51, 1106–1112 (2019). doi: 10.1038/s41588-019-0426-7;
pmid: 31182810

7. Z. Su et al., A deletion mutation in TaHRC confers Fhb1
resistance to Fusarium head blight in wheat. Nat. Genet. 51,
1099–1105 (2019). doi: 10.1038/s41588-019-0425-8;
pmid: 31182809

8. N. Rawat et al., Wheat Fhb1 encodes a chimeric lectin with
agglutinin domains and a pore-forming toxin-like domain
conferring resistance to Fusarium head blight. Nat. Genet. 48,
1576–1580 (2016). doi: 10.1038/ng.3706; pmid: 27776114

9. L. Cui et al., Development of perennial wheat through
hybridization between wheat and wheatgrasses: A review.
Engineering 4, 507–513 (2018). doi: 10.1016/j.eng.2018.07.003

10. X. Zhang et al., A genetic map of Lophopyrum ponticum
chromosome 7E, harboring resistance genes to Fusarium head
blight and leaf rust. Theor. Appl. Genet. 122, 263–270 (2011).
doi: 10.1007/s00122-010-1441-3; pmid: 20830464

11. L. L. Qi, M. O. Pumphrey, B. Friebe, P. D. Chen, B. S. Gill,
Molecular cytogenetic characterization of alien introgressions
with gene Fhb3 for resistance to Fusarium head blight disease
of wheat. Theor. Appl. Genet. 117, 1155–1166 (2008).
doi: 10.1007/s00122-008-0853-9; pmid: 18712343

12. C. Ceoloni et al., Cytogenetic mapping of a major locus for
resistance to Fusarium head blight and crown rot of wheat on
Thinopyrum elongatum 7EL and its pyramiding with valuable
genes from a Th. ponticum homoeologous arm onto bread
wheat 7DL. Theor. Appl. Genet. 130, 2005–2024 (2017).
doi: 10.1007/s00122-017-2939-8; pmid: 28656363

13. J. Guo et al., High-density mapping of the major FHB
resistance gene Fhb7 derived from Thinopyrum ponticum and
its pyramiding with Fhb1 by marker-assisted selection.
Theor. Appl. Genet. 128, 2301–2316 (2015). doi: 10.1007/
s00122-015-2586-x; pmid: 26220223

14. H. Li, X. Wang, Thinopyrum ponticum and Th. intermedium:
The promising source of resistance to fungal and viral diseases
of wheat. J. Genet. Genomics 36, 557–565 (2009).
doi: 10.1016/S1673-8527(08)60147-2; pmid: 19782957

15. X. Shen, H. Ohm, Molecular mapping of Thinopyrum-derived
Fusarium head blight resistance in common wheat. Mol. Breed.
20, 131–140 (2007). doi: 10.1007/s11032-007-9079-9

16. R. P. Singh, R. A. McIntosh, Genetics of resistance to
Puccinia graminis tritici in ‘Chris’ and ‘W3746’ wheats.
Theor. Appl. Genet. 73, 846–855 (1987). doi: 10.1007/
BF00289389; pmid: 24241294

17. R. M. Waterhouse et al., BUSCO Applications from quality
assessments to gene prediction and phylogenomics. Mol. Biol.

Evol. 35, 543–548 (2018). doi: 10.1093/molbev/msx319;
pmid: 29220515

18. S. Ou, J. Chen, N. Jiang, Assessing genome assembly quality
using the LTR Assembly Index (LAI). Nucleic Acids Res. 46,
e126 (2018). doi: 10.1093/nar/gky730; pmid: 30107434

19. T. Kantarski et al., Development of the first consensus genetic
map of intermediate wheatgrass (Thinopyrum intermedium)
using genotyping-by-sequencing. Theor. Appl. Genet. 130,
137–150 (2017). doi: 10.1007/s00122-016-2799-7;
pmid: 27738715

20. B. S. Gaut, B. R. Morton, B. C. McCaig, M. T. Clegg,
Substitution rate comparisons between grasses and palms:
Synonymous rate differences at the nuclear gene Adh parallel
rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci.
U.S.A. 93, 10274–10279 (1996). doi: 10.1073/
pnas.93.19.10274; pmid: 8816790

21. J. Guo et al., Molecular and cytological comparisons of
chromosomes 7el1, 7el2, 7E

e, and 7Ei derived from Thinopyrum.
Cytogenet. Genome Res. 145, 68–74 (2015). doi: 10.1159/
000381838; pmid: 25968454

22. X. Shen, L. Kong, H. Ohm, Fusarium head blight resistance in
hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines
and tagging of the alien chromatin by PCR markers. Theor.
Appl. Genet. 108, 808–813 (2004). doi: 10.1007/s00122-003-
1492-9; pmid: 14628111

23. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman,
Basic local alignment search tool. J. Mol. Biol. 215, 403–410
(1990). doi: 10.1016/S0022-2836(05)80360-2;
pmid: 2231712

24. M. Morel, A. A. Ngadin, M. Droux, J. P. Jacquot, E. Gelhaye,
The fungal glutathione S-transferase system. Evidence of new
classes in the wood-degrading basidiomycete Phanerochaete
chrysosporium. Cell. Mol. Life Sci. 66, 3711–3725 (2009).
doi: 10.1007/s00018-009-0104-5; pmid: 19662500

25. S. Walter, P. Nicholson, F. M. Doohan, Action and reaction of
host and pathogen during Fusarium head blight disease.
New Phytol. 185, 54–66 (2010). doi: 10.1111/j.1469-
8137.2009.03041.x; pmid: 19807873

26. B. Kluger et al., Stable isotopic labelling-assisted untargeted
metabolic profiling reveals novel conjugates of the mycotoxin
deoxynivalenol in wheat. Anal. Bioanal. Chem. 405, 5031–5036
(2013). doi: 10.1007/s00216-012-6483-8; pmid: 23086087

27. S. A. Gardiner et al., Transcriptome analysis of the barley-
deoxynivalenol interaction: Evidence for a role of glutathione in
deoxynivalenol detoxification. Mol. Plant Microbe Interact. 23,
962–976 (2010). doi: 10.1094/MPMI-23-7-0962;
pmid: 20521958

28. A. Stanic et al., Characterization of deoxynivalenol–glutathione
conjugates using nuclear magnetic resonance spectroscopy
and liquid chromatography–high-resolution mass
spectrometry. J. Agric. Food Chem. 64, 6903–6910 (2016).
doi: 10.1021/acs.jafc.6b02853; pmid: 27548277

29. F. Berthiller et al., Occurrence of deoxynivalenol and its
3-b-D-glucoside in wheat and maize. Food Addit. Contam. Part
A Chem. Anal. Control Expo. Risk Assess. 26, 507–511 (2009).
doi: 10.1080/02652030802555668; pmid: 19680925

30. F. Husnik, J. P. McCutcheon, Functional horizontal gene
transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16,
67–79 (2018). doi: 10.1038/nrmicro.2017.137;
pmid: 29176581

31. P. J. Keeling, J. D. Palmer, Horizontal gene transfer in
eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008).
doi: 10.1038/nrg2386; pmid: 18591983

32. T. Kyndt et al., The genome of cultivated sweet potato contains
Agrobacterium T-DNAs with expressed genes: An example

of a naturally transgenic food crop. Proc. Natl. Acad. Sci. U.S.A.
112, 5844–5849 (2015). doi: 10.1073/pnas.1419685112;
pmid: 25902487

33. H. Shinozuka et al., Horizontal transfer of a ß-1,6-glucanase
gene from an ancestral species of fungal endophyte to a cool-
season grass host. Sci. Rep. 7, 9024 (2017). doi: 10.1038/
s41598-017-07886-2; pmid: 28831055

34. A. Tanaka, D. Takemoto, T. Chujo, B. Scott, Fungal endophytes
of grasses. Curr. Opin. Plant Biol. 15, 462–468 (2012).
doi: 10.1016/j.pbi.2012.03.007; pmid: 22465162

35. L. Zhao et al., Cloning and characterization of a specific UDP-
glycosyltransferase gene induced by DON and Fusarium
graminearum. Plant Cell Rep. 37, 641–652 (2018).
doi: 10.1007/s00299-018-2257-x; pmid: 29372381

ACKNOWLEDGMENTS

We thank Q. Song (Lanzhou University) and X. Zhang (University
of Louisville) for advice on entophytic fungi and biochemical analysis
of trichothecenes, X. L. Zhang (Northeast Forestry University) for
providing some marker sequences of the Triticeae E genome,
and Y. Liang and J. Yu (Shandong Agricultural University) for
providing the Fusarium stains. Funding: This work was supported
by the National Natural Science Foundation of China (31520103911,
31871610, and 31901492), the National Key Research and
Development Program (2016YFD0100102-2), the National Key
Program on Transgenic Research from the Ministry of Agriculture
of China (2016ZX08002003-002 and 2016ZX08009-003), and
the Agricultural Variety Improvement Project of Shandong Province
(2019LZGC016). Author contributions: H.W. and L.K. designed
the project. S.S.X., G.B., E.N., C.G., and H.O. supervised the project.
S.S., K.W., L.C., X.F., and F.N. performed bioinformatics analysis.
W.G., L.Z., B.H., Z.L., S.S.X., J.G., M.L., P.S., X.F.L., G.W., C.B., W.Z.,
X.C., J.W., L.D., W.C., W.L., G.X., J.Z., Y.H., Y.X., Y.G., W.J.L.,
Y.L., H.Y., J.L., X.L., Y.Z., and X.W. conducted experiments. X.M.
and A.L. performed the field work. H.W., S.S., G.B., and L.K. wrote
the paper with input from all authors. Competing interests:
The authors declare no competing interests. Patents with application
nos. 2020101464009 and 202010146399X are pending. Data and
materials availability: All data are available in the manuscript,
the supplementary materials, or at publicly accessible repositories.
These data in the public repositories include all raw reads and
assembled sequence data for Th. elongatum in NCBI under
BioProjectID PRJNA540081, the assembly and annotation
data of Th. elongatum, and the draft genomes of 7E/7D
substitution lines in the Genome Warehouse in BIG Data
Center under accession numbers GWHABKY00000000,
GWHABLF00000000, and GWHABLE00000000, which are
accessible at https://bigd.big.ac.cn/gwh. All materials are
available from L. Kong upon request.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/368/6493/eaba5435/suppl/DC1
Materials and Methods
Figs. S1 to S40
Tables S1 to S23
Captions for Data S1 to S3
References (36–93)
MDAR Reproducibility Checklist
Data S1 to S3

View/request a protocol for this paper from Bio-protocol.

12 December 2019; accepted 26 March 2020
Published online 9 April 2020
10.1126/science.aba5435

Wang et al., Science 368, eaba5435 (2020) 22 May 2020 7 of 7

RESEARCH | RESEARCH ARTICLE
on July 1, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1094/PHYTO-03-19-0095-RVW
http://dx.doi.org/10.1094/PHYTO-03-19-0095-RVW
http://www.ncbi.nlm.nih.gov/pubmed/31369363
http://dx.doi.org/10.1104/pp.108.129684
http://www.ncbi.nlm.nih.gov/pubmed/19126701
http://dx.doi.org/10.1007/s13213-014-0899-7
http://dx.doi.org/10.1007/s13213-014-0899-7
http://dx.doi.org/10.1016/j.tplants.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/31679993
http://dx.doi.org/10.1038/s41588-019-0454-3
http://www.ncbi.nlm.nih.gov/pubmed/31253973
http://dx.doi.org/10.1038/s41588-019-0426-7
http://www.ncbi.nlm.nih.gov/pubmed/31182810
http://dx.doi.org/10.1038/s41588-019-0425-8
http://www.ncbi.nlm.nih.gov/pubmed/31182809
http://dx.doi.org/10.1038/ng.3706
http://www.ncbi.nlm.nih.gov/pubmed/27776114
http://dx.doi.org/10.1016/j.eng.2018.07.003
http://dx.doi.org/10.1007/s00122-010-1441-3
http://www.ncbi.nlm.nih.gov/pubmed/20830464
http://dx.doi.org/10.1007/s00122-008-0853-9
http://www.ncbi.nlm.nih.gov/pubmed/18712343
http://dx.doi.org/10.1007/s00122-017-2939-8
http://www.ncbi.nlm.nih.gov/pubmed/28656363
http://dx.doi.org/10.1007/s00122-015-2586-x
http://dx.doi.org/10.1007/s00122-015-2586-x
http://www.ncbi.nlm.nih.gov/pubmed/26220223
http://dx.doi.org/10.1016/S1673-8527(08)60147-2
http://www.ncbi.nlm.nih.gov/pubmed/19782957
http://dx.doi.org/10.1007/s11032-007-9079-9
http://dx.doi.org/10.1007/BF00289389
http://dx.doi.org/10.1007/BF00289389
http://www.ncbi.nlm.nih.gov/pubmed/24241294
http://dx.doi.org/10.1093/molbev/msx319
http://www.ncbi.nlm.nih.gov/pubmed/29220515
http://dx.doi.org/10.1093/nar/gky730
http://www.ncbi.nlm.nih.gov/pubmed/30107434
http://dx.doi.org/10.1007/s00122-016-2799-7
http://www.ncbi.nlm.nih.gov/pubmed/27738715
http://dx.doi.org/10.1073/pnas.93.19.10274
http://dx.doi.org/10.1073/pnas.93.19.10274
http://www.ncbi.nlm.nih.gov/pubmed/8816790
http://dx.doi.org/10.1159/000381838
http://dx.doi.org/10.1159/000381838
http://www.ncbi.nlm.nih.gov/pubmed/25968454
http://dx.doi.org/10.1007/s00122-003-1492-9
http://dx.doi.org/10.1007/s00122-003-1492-9
http://www.ncbi.nlm.nih.gov/pubmed/14628111
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://dx.doi.org/10.1007/s00018-009-0104-5
http://www.ncbi.nlm.nih.gov/pubmed/19662500
http://dx.doi.org/10.1111/j.1469-8137.2009.03041.x
http://dx.doi.org/10.1111/j.1469-8137.2009.03041.x
http://www.ncbi.nlm.nih.gov/pubmed/19807873
http://dx.doi.org/10.1007/s00216-012-6483-8
http://www.ncbi.nlm.nih.gov/pubmed/23086087
http://dx.doi.org/10.1094/MPMI-23-7-0962
http://www.ncbi.nlm.nih.gov/pubmed/20521958
http://dx.doi.org/10.1021/acs.jafc.6b02853
http://www.ncbi.nlm.nih.gov/pubmed/27548277
http://dx.doi.org/10.1080/02652030802555668
http://www.ncbi.nlm.nih.gov/pubmed/19680925
http://dx.doi.org/10.1038/nrmicro.2017.137
http://www.ncbi.nlm.nih.gov/pubmed/29176581
http://dx.doi.org/10.1038/nrg2386
http://www.ncbi.nlm.nih.gov/pubmed/18591983
http://dx.doi.org/10.1073/pnas.1419685112
http://www.ncbi.nlm.nih.gov/pubmed/25902487
http://dx.doi.org/10.1038/s41598-017-07886-2
http://dx.doi.org/10.1038/s41598-017-07886-2
http://www.ncbi.nlm.nih.gov/pubmed/28831055
http://dx.doi.org/10.1016/j.pbi.2012.03.007
http://www.ncbi.nlm.nih.gov/pubmed/22465162
http://dx.doi.org/10.1007/s00299-018-2257-x
http://www.ncbi.nlm.nih.gov/pubmed/29372381
https://bigd.big.ac.cn/gwh
https://science.sciencemag.org/content/368/6493/eaba5435/suppl/DC1
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/science.aba5435
http://science.sciencemag.org/


wheat
 head blight resistance inFusarium from fungus underlies Fhb7Horizontal gene transfer of 

Nevo, Caixia Gao, Herbert Ohm and Lingrang Kong
Liu, Huayan Yin, Jiazhu Li, Xiang Li, Yan Zhao, Xiaoqian Wang, Fei Ni, Xin Ma, Anfei Li, Steven S. Xu, Guihua Bai, Eviatar 
Wu, Luhao Dong, Wuying Chen, Wen Li, Guilian Xiao, Jinxiao Zhao, Yongchao Hao, Ying Xu, Yu Gao, Wenjing Liu, Yanhe
Jun Guo, Min Li, Peisen Su, Xuefeng Li, Guiping Wang, Cunyao Bo, Xiaojian Fang, Wenwen Zhuang, Xinxin Cheng, Jianwen 
Hongwei Wang, Silong Sun, Wenyang Ge, Lanfei Zhao, Bingqian Hou, Kai Wang, Zhongfan Lyu, Liyang Chen, Shoushen Xu,

originally published online April 9, 2020DOI: 10.1126/science.aba5435
 (6493), eaba5435.368Science 

, this issue p. eaba5435; see also p. 822Science
resistance to FHB.

-transferase detoxifies the trichothecene toxin and, when expressed in wheat, confersSJones). The encoded glutathione 
 cloned a gene that can address both problems (see the Perspective by Wulff andet al.improve cultivated wheat, Wang 

, a wild relative of wheat used in breeding programs toThinopyrum elongatumFrom the assembly of the genome of 
 head blight (FHB), caused by a fungus, reduces wheat crop yield and introduces toxins into the harvest.Fusarium

Fungal disease meets its match

ARTICLE TOOLS http://science.sciencemag.org/content/368/6493/eaba5435

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/04/08/science.aba5435.DC1

CONTENT
RELATED 

http://science.sciencemag.org/content/sci/368/6487/122.full
http://science.sciencemag.org/content/sci/368/6493/822.full

REFERENCES

http://science.sciencemag.org/content/368/6493/eaba5435#BIBL
This article cites 92 articles, 11 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on July 1, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/368/6493/eaba5435
http://science.sciencemag.org/content/suppl/2020/04/08/science.aba5435.DC1
http://science.sciencemag.org/content/sci/368/6493/822.full
http://science.sciencemag.org/content/sci/368/6487/122.full
http://science.sciencemag.org/content/368/6493/eaba5435#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

