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Translational regulation by upstream open reading frames 
(uORFs) is becoming established as a general mechanism 
for controlling the amount of protein that is synthesized from 
downstream primary ORFs (pORFs)1–5. We found that genome 
editing of endogenous uORFs in plants enabled the modulation 
of translation of mRNAs from four pORFs that are involved in 
either development or antioxidant biosynthesis. A single-guide 
RNA that targeted the region harboring a uORF initiation codon 
can produce multiple mutations. Following uORF editing, we 
observed varying amounts of mRNA translation in four pORFs. 
Notably, editing the uORF of LsGGP2, which encodes a key 
enzyme in vitamin C biosynthesis in lettuce, not only increased 
oxidation stress tolerance, but also increased ascorbate content 
by ~150%. These data indicate that editing plant uORFs 
provides a generalizable, efficient method for manipulating 
translation of mRNA that could be applied to dissect biological 
mechanisms and improve crops.

The control of gene expression by transcriptional regulation has a 
fundamental role in the generation of phenotypic diversity in liv-
ing organisms. Post-transcriptional regulation of translation is also 
involved in regulating protein levels6. Substantial efforts have been 
made to develop methods to manipulate mRNA translation to alter 
cellular protein levels for therapeutic purposes or to improve traits. 
For example, reducing the translation of a subset of mRNAs in 
leukemia cells by manipulating the level of heterotrimeric eukaryo-
tic initiation complex eIF4F is being tested as a potential cancer 
treatment7, and antisense long non-coding RNAs are being used to 
increase the production of specific cellular proteins8,9. Translation 
enhancers have been identified for many animal genes and viruses, 
and some have been used to increase protein expression from  
cloned transgenes10–12.

These applications suggest that targeting mRNA translation could 
be generally applied to manipulate the amount of protein produced 
by a wide range of genes. To date, however, a simple, reliable and 
generalizable approach to manipulate the translation of either plant 
or animal mRNA is lacking.

We were intrigued by reports investigating the role(s) of uORFs, 
which are short protein-coding elements located in the 5′ leader 
region of downstream pORFs1,2. uORFs are common in eukaryotic 
genes. Large proportions of human (49%) and mouse (44%) tran-
scripts harbor one or more uORFs1. In 11 plant species, including 
Arabidopsis thaliana, maize and rice, the proportion of transcripts 
that harbors uORFs varies from ~30% to more than 40%2. uORFs with 
the canonical initiation codon ATG are most common, but non-ATG 
uORFs are also widespread3. Molecular and functional analyses have 
revealed that uORFs substantially influence the translation of pORF 
mRNAs, and have measurable effects on phenotype1–5.

uORFs are frequently detected in the transcripts of plant metabolic 
genes and have been reported to regulate metabolic functions. In addi-
tion, many plant genes that encode protein kinases and transcription fac-
tors also harbor uORFs, and some of these uORFs have been reported to 
regulate crucial developmental processes2. For example, a previous study 
reported that insertion of a uORF upstream of a pORF could be used to 
control the translation of a gene that regulates plant immunity in rice, 
providing disease resistance without any reduction in grain yield5.

Given the precision of CRISPR/Cas9 technology13, we hypoth-
esized that genome editing of uORFs might prove to be a generally 
applicable and efficient approach for increasing the translation of 
mRNAs transcribed from important eukaryotic genes (Fig. 1a). To 
test our hypothesis, we selected four genes that are important in plant 
development: AtBRI1, AtVTC2, LsGGP1 and LsGGP2. AtBRI1 (phy-
tohormone brassinosteroid (BR) receptor in Arabidopsis14) has one 
ATG-uORF (uORFAtBRI1) in its 5′ leader sequence (Supplementary 
Fig. 1a). AtVTC2 (GDP-l-galactose phosphorylase (GGP), functions 
in production of ascorbic acid in plant cells15) has a uORF located in 
the 5′ leader region (uORFAtVTC2) with two putative non-canonical  
initiation codons (ATCACG) (Supplementary Fig. 1b), but only the 
second one (ACG) is surrounded by a Kozak consensus (with a purine 
at position −3 and a G at +4), and is important for initiating the trans-
lation of uORFAtVTC2

15. LsGGP1 and LsGGP2 are lettuce homologs of 
AtVTC2, and each has a single uORF with a conserved ACG codon 
(uORFLsGGP1 and uORFLsGGP2, respectively) similar to uORFAtVTC2 
(Supplementary Fig. 1c,d).
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First, we tested whether mutating the region harboring a uORF 
initiation codon increases translation of a downstream pORF mRNA. 
We generated two defined deletions and one mutation in the uORF 

initiation codon of each of the four genes tested (AtBRI1, AtVTC2, 
LsGGP1 and LsGGP2). The read-out for translation was a dual- 
luciferase reporter system16 (Fig. 1b). The wild-type (WT) 5′ leader,  
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Figure 1  CRISPR/Cas9-mediated genome editing of uORFs. (a) Diagram of CRISPR/Cas9-mediated editing of a WT uORF that represses translation 
of downstream pORF mRNA. The mutant uorf reduced translation inhibition, leading to increased proteins production from the pORF. (b) Three types 
of mutant constructs used to test whether altering the region harboring uORF initiation codon is generally effective in disrupting mRNA translation 
inhibition by uORFs in the dual-luciferase assays. Del1 and Del2 were defined as deletions, whereas AAA involved the mutation of uORF initiation 
codon to AAA. (c) Effects of the three types of mutations on LUC/REN activity (top) and mRNA level (bottom) in dual-luciferase assays. uORFAtBRI1, 
uORFAtVTC2, uORFLsGGP1 and uORFLsGGP2 came from AtBRI1, AtVTC2, LsGGP1 and LsGGP2, respectively. The WT constructs and those carrying Del1, 
Del2 or AAA mutations were expressed in Arabidopsis or lettuce protoplasts, and the mean LUC/REN activity and mRNA levels conferred by each  
mutant construct were normalized to those of WT control (n = 3 biologically independent experiments). All values represent means ± s.d. *P < 0.05, 
**P < 0.01, ****P < 0.0001; ns, no significant difference by two-tailed Student’s t test.
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with intact uORF, and three mutant 5′ leaders (Del1, a 14-bp  
deletion, 43 bp upstream of the uORF initiation codon; Del2, a 14-bp 
deletion encompassing the uORF initiation codon; and AAA, uORF 
initiation codon mutated from ATG or ACG to AAA to prevent uORF 
translation) were each cloned upstream of the luciferase (LUC) cod-
ing region in an expression cassette driven by the 35S promoter. The 
resulting constructs also harbored a second 35S-promoter-driven 
cassette expressing Renilla reniformis luciferase (REN) as an internal 
vector control (Fig. 1b). Four constructs for each gene were expressed 
in protoplasts in parallel transfections, and we calculated the mean 
LUC/REN activities and LUC/REN mRNA levels using data from 
multiple assays (Fig. 1c).

Compared with WT 5′ leaders, mutant leaders with Del2 consist-
ently generated substantially higher LUC/REN activity levels, with fold 
increases ranging from approximately 2.65 (uorfAtVTC2-Del2) to 8.33 
(uorfLsGGP2-Del2) (Fig. 1c). The 5′ leaders with the uORF initiation 
codon mutated to AAA were the second most effective for increasing 
LUC/REN activity, whereas those with Del1 resulted in little to no 
increase in LUC/REN activity (Fig. 1c). Quantitative RT-PCR assays 
revealed that the LUC/REN mRNA levels transcribed from the vari-
ous constructs did not differ significantly (Fig. 1c). These data indi-
cate that small deletions that remove the uORF initiation codon might 
be generally effective at upregulating translation of pORF transcripts 
without affecting transcription of the pORF. Thus, we chose regions 
harboring the uORF initiation codons as target sites for single-guide 
RNAs (sgRNAs) in subsequent genome editing experiments.

We edited uORFAtBRI1 and obtained more than 30 mutant lines. 
Two homozygous transgene-free lines (uorfAtBRI1-1 and uorfAtBRI1-2)  
of Arabidopsis were produced, each with a single nucleotide  
(G or T) insertion in the uORF (uATG) initiation codon (Fig. 2a, 
Supplementary Fig. 2b and Supplementary Tables 1–3). Transcript 
levels did not differ between WT and mutant plants (Fig. 2b, 
Supplementary Fig. 3a,b), but AtBRI1 protein was upregulated in 
both mutants, particularly in uorfAtBRI1-2 (Fig. 2c and Supplementary 
Fig. 3a,b). Overexpression of AtBRI1 reduces inhibition of Arabidopsis 
hypocotyl growth by brassinazole, which has been used as a chemical 
agent for inhibiting BR biosynthesis14. Consistent with this, in the 
presence of exogenous brassinazole, the hypocotyls of both mutant 
seedlings were longer than those of the WT, with the effect being 
more obvious for uorfAtBRI1-2 (Fig. 2d and Supplementary Fig. 4). 
These results reveal for the first time, to the best of our knowledge, 
a role for uORFAtBRI1 in regulating the level of AtBRI1 in vivo and 
provide evidence that editing this uORF can modulate pORF mRNA 
translation. It should be noted that editing the uATG in uorfAtBRI1-1 
inadvertently created an in-frame GTG codon; this might result in 
reduced translation of the uORF rather than abolition of translation, 
as translation can initiate from variant codons, such as GTG, albeit 
with reduced efficiency3. We hypothesize that incomplete inactiva-
tion of uORFAtBRI1 might be responsible for the reduced effect of 
the uorfAtBRI1-1 mutation in promoting AtBRI1 mRNA translation. 
Consistent with this notion, the uorfAtBRI1-1 mutant leader was sub-
stantially less effective than the uorfAtBRI1-2 mutant leader, or a leader 
with the uATG replaced by AAA, at increasing LUC/REN activities 
(Supplementary Fig. 5b). Note that the four leader sequences pro-
duced similar LUC/REN mRNA levels (Supplementary Fig. 5c).

Next, we tested whether our uORF-editing strategy could be applied 
to an agronomically relevant plant trait in Arabidopsis. Ascorbic acid 
is an essential nutrient for humans and livestock. Substantial effort 
has been devoted to increasing ascorbic acid concentrations in plants 
by bioengineering and breeding17,18. In Arabidopsis, although uOR-
FAtVTC2 has been implicated in negative feedback control of AtVTC2 

mRNA translation by ascorbic acid15, it is not known whether disrup-
tion of uORFAtVTC2 increases ascorbic acid content. We edited uOR-
FAtVTC2 and produced two homozygous, transgene-free mutant plants, 
one with a 37-nucleotide deletion upstream of the initiation codon 
ACG (uorfAtVTC2-1) and a second with the ACG codon removed by 
an indel event (uorfAtVTC2-2) (Fig. 3a, Supplementary Fig. 2c and 
Supplementary Tables 1–3).

We found that the ascorbic acid content of uorfAtVTC2-2 leaves 
was >70% higher than that of WT controls, whereas the ascorbic 
acid content of uorfAtVTC2-1 leaves was unchanged (Fig. 3d). Given 
that the levels of AtVTC2 transcripts in the WT, uorfAtVTC2-1 and  
uorfAtVTC2-2 leaves were similar (Supplementary Fig. 6), we conclude 
that increased translation of AtVTC2 transcripts is responsible for 
the large increase of ascorbic acid in uorfAtVTC2-2. In dual-luciferase 
reporter assays, the 5′ uorfAtVTC2-2 leader increased LUC/REN activ-
ity by 261%, whereas the uorfAtVTC2-1 leader generated a similar level 
of LUC/REN activity as WT. Notably, the LUC/REN mRNA levels 
containing these three leader sequences did not differ significantly 
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Figure 2  Effect of editing the AtBRI1 uORF. (a) Two homozygous 
transgene-free mutants (T4 generation) of uORFAtBRI1 obtained by 
CRISPR/Cas9 editing. The uORF sequence (blue) is shown with the 
sgRNA target site underlined and the protospacer-adjacent motif shown 
in bold. The G or T nucleotide insertion in the two mutants is labeled in 
red. The putative initiation codon of uORFAtBRI1 is boxed. (b) Comparison 
of mRNA levels among WT control, uorfAtBRI1-1 and uorfAtBRI1-2. Actin2 
(At3g18780) was used as internal control for the quantitative real-time 
PCR assay (n = 3 biologically independent experiments). (c) Comparison 
of AtBRI1 protein levels among WT control, uorfAtBRI1-1 and uorfAtBRI1-2. 
PAG (20S proteasome α-subunit G1, At2g27020) was used as loading 
control in the immunoblot assay. Similar results obtained from two  
more independent experiments are shown in Supplementary Figure 3.  
(d) Hypocotyl lengths of WT control (black dot), uorfAtBRI1-1 (red square) 
and uorfAtBRI1-2 (blue triangle) seedlings (n = 32 biologically  
independent samples) grown on 1/2 MS medium containing 0, 0.2 or  
0.8 µM brassinazole in the dark for 8 d. All values represent means ± s.d. 
*P < 0.05, ****P < 0.0001; ns, no significant difference by two-tailed 
Student’s t test.
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(Supplementary Fig. 7). These data confirm that AtVTC2 mRNA 
translation is boosted by the uorfAtVTC2-2 mutation, but not by the 
uorfAtVTC2-1 mutation. The effect of the uorfAtVTC2-2 mutation on 
AtVTC2 mRNA translation was similar to that resulting from deletion 
of the initiation codon (ACG) (Fig. 3a).

We then investigated whether editing the conserved uORF in 
AtVTC2 homologs could be used to increase the ascorbic acid con-
tent of lettuce, which is a cheap and convenient source of vitamins for 
human consumption. Lettuce (Lactuca sativa L.) is a globally popular 
vegetable19. Using sequence alignment, we identified two AtVTC2 
homologs, LsGGP1 and LsGGP2, the protein products of which were 
more than 70% identical to AtVTC2 (Supplementary Fig. 8). Single 
uORFs were identified upstream of LsGGP1 (uORFLsGGP1) and LsGGP2 
(uORFLsGGP2) (Supplementary Fig. 1c,d), and two different sgRNAs  
(Fig. 3b,c and Supplementary Table 4) were designed to mutate them.

We analyzed two homozygous transgene-free mutant lines for uOR-
FLsGGP1 (uorfLsGGP1-1 and uorfLsGGP1-2; Fig. 3b, Supplementary Fig. 9  
and Supplementary Table 5). In all of the plant lines that we tested, 

the ACG codon was retained, but deletions introduced by genome 
editing disrupted the reading frame and we expected that they would 
reduce translation from the uORF. Compared with WT lettuce, the 
foliar ascorbic acid contents of uorfLsGGP1-1 and uorfLsGGP1-2 were 
increased by 43.1% and 34.5%, respectively (Fig. 3e), whereas LsGGP1 
mRNA levels were unaffected (Supplementary Fig. 10a). Thus, the 
mutations in uorfLsGGP1-1 and uorfLsGGP1-2 reduced translation of 
uORFLsGGP1 and enhanced translation of LsGGP1 mRNA.

For uORFLsGGP2, three homozygous transgene-free mutants 
were analyzed in more detail (Fig. 3c, Supplementary Fig. 9 and 
Supplementary Table 5). In uorfLsGGP2-1 and uorfLsGGP2-2, small 
deletions (up to 14 bp) were present proximal to the initiation codon 
(ACG), but a large deletion (92 bp) in uorfLsGGP2-3 led to the loss of 
both the initiation codon and a portion of the uORF coding region 
(Fig. 3c). Foliar ascorbic acid content was significantly increased 
in all three mutants and, as expected, the increase was greater for  
uorfLsGGP2-3 (156.6%) than for uorfLsGGP2-1 and uorfLsGGP2-2 (66.6% 
and 97.7%, respectively; Fig. 3f). Transcript levels of LsGGP2 did 
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Figure 3  Editing uORFs of Arabidopsis AtVTC2 and lettuce homologs LsGGP1 and LsGGP2 increases foliar ascorbic acid production. (a–c) CRISPR/
Cas9 induced mutations in the homozygous transgene-free uORF mutants for AtVTC2 (T4 generation; a), LsGGP1 (T1 generation; b) and LsGGP2 (T1 
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not differ markedly between the WT control and uorfLsGGP2-1 and 
uorfLsGGP2-2; however, LsGGP2 was significantly upregulated in  
uorfLsGGP2-3 (Supplementary Fig. 10b) and we speculate that the large 
deletion in the uORF of the uorfLsGGP2-3 mutant promoted the accu-
mulation of the mRNA, as well as increasing translation of the pORF. 
We note that the ascorbic acid contents of the LsGGP2 uORF mutants 
were generally higher than those of the LsGGP1 uORF mutants  
(Fig. 3e,f), which suggests that LsGGP2 may encode the major GGP 
isozyme of ascorbic acid biosynthesis in lettuce.

Ascorbic acid is known to increase antioxidation activity20. We treated 
two uORF mutants of LsGGP1 and LsGGP2 with paraquat, an herbi-
cide that kills plant cells by inducing superoxide anions20, and found 
that they were more tolerant to this herbicide than the WT (Fig. 3g).  
Quantitative comparison revealed that the percentages of chlorotic 
area in uorfLsGGP2-3 (35.7%) and uorfLsGGP1-1 (44.1%) leaves were both 
significantly lower than that in WT controls (56.1%) when treated 
with paraquat for 24 h (Supplementary Fig. 11). The higher toler-
ance of uorfLsGGP2-3 leaves to paraquat is consistent with the greater 
accumulation of ascorbic acid in this line (Fig. 3e,f). One concern 
is the occurrence of off-target mutations. Using the standard T7E1 
assay21, we did not find mutations in the potential off-target sites in the 
mutant lines of AtBRI1, AtVTC2, LsGGP1 and LsGGP2 that we gener-
ated (Supplementary Figs. 12 and 13 and Supplementary Table 6).

On the basis of our data, we propose that genome editing of uORFs 
can, in general, increase mRNA translation, thereby increasing the 
amounts of protein synthesized. We found that a single sgRNA target-
ing the region harboring a uORF initiation codon can produce multiple 
mutants with varying levels of translation of the mRNA of the relevant 
pORF, which makes this strategy simple. The resulting mutants can pro-
vide insights into key biological processes. Another important advan-
tage of our method is that transgene-free lines of plants with improved 
traits, as exemplified by the uorfLsGGP1 and uorfLsGGP2 mutants, are 
readily obtained, which might expedite crop improvement.

The availability of a suite of genome-editing tools, including base 
editors and the availability of Cas9 variants with expanded PAM rec-
ognition22–24, means that manipulation of uORFs by genome editing 
to fine-tune mRNA translation and in turn protein concentrations is 
likely to become easier over time. Owing to the presence of uORFs in 
many eukaryotic genes in both plants and animals, it is conceivable 
that our method could be applied more widely in the future.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Plasmid construction. To generate mutants of uORFs in AtBRI1 and AtVTC2, 
pYAO:hSpCas9-AtBRI1uORF-sgRNA and pYAO:hSpCas9-AtVTC2uORF-sgRNA 
were prepared as previously reported25. Briefly, AtU6-26-AtBRI1uORF-sgRNA 
and AtU6-26-AtVTC2uORF-sgRNA were constructed with the primers listed 
in Supplementary Table 4, and BsaI-digested AtU6-26-SK. They were digested 
using SpeI and NheI, followed by cloning into SpeI digested pYAO:hspCas9.

To produce uORF mutants for LsGGP1 and LsGGP2, pKSE401-
LsGGP1uORF-sgRNA and pKSE401-LsGGP2uORF-sgRNA were constructed 
as previously described26. BsaI-digested pKSE401 was used to insert sgRNAs, 
which were prepared with the primers listed in Supplementary Table 4.

For developing the constructs used in the dual-luciferase assay, the 35S 
promoter-fused WT and mutated forms of 5′-leader sequences of each gene 
(Supplementary Fig. 14) were synthesized commercially (Generaybio). They 
were then cloned into the pGreenII0800-LUC vector digested with HindIII and 
NcoI16. Cloning was verified by DNA sequencing. All sequence information 
and constructs are available upon request.

Generation of uORF mutants for AtBRI1 and AtVTC2. The uORF mutants of 
AtBRI1 and AtVTC2 were generated by genetic transformation of Arabidopsis 
(ecotype Col-0) using flower dipping with the vectors pYAO:hSpCas9-
AtBRI1uORF-sgRNA and pYAO:hSpCas9-AtVTC2uORF-sgRNA, respectively. 
The resulting mutants were verified by sequencing the PCR products amplified 
with targeting site-specific primers (Supplementary Table 7). Transgene-free 
mutants were selected by PCR using four pairs of primers (Supplementary 
Table 7), and verified by lack of antibiotic resistance.

Protoplast culture and transfection. Arabidopsis and lettuce protoplasts were 
isolated from 14-d-old and 10-d-old seedlings grown on 1/2 MS medium, 
respectively27,28. They were transfected by pGreenII0800-p35S:AtBRI1- 
5′-leader-LUC,pGreenII0800-p35S:AtVTC2-5′-leader-LUC, pGreenII0800-
p35S:LsGGP1-5′-leader-LUC, pGreenII0800-p35S:LsGGP2-5′-leader-LUC or 
the constructs carrying the mutated forms of the relevant 5′ leader sequences 
following a previously reported protocol29. In each transfection, 20 µg plas-
mid DNA and approximately 5 × 105 protoplasts were used. Two days after 
transfection, the protoplasts were harvested by centrifugation at 100 g for 
5 min. LUC/REN activity was measured with the Dual-Luciferase Reporter 
Assay System (Promega). The LUC/REN levels conferred by the constructs 
with mutated 5′ leader sequences were calculated relative to those produced 
by pGreenII0800-p35S:AtBRI1-5′-leader-LUC, pGreenII0800-p35S:AtVTC2-
5′-leader-LUC, pGreenII0800-p35S:LsGGP1-5′-leader-LUC or pGreenII0800-
p35S:LsGGP2-5′ leader-LUC.

RNA preparation and quantitative real-time PCR. Total RNA was extracted 
from the desired protoplast and plant samples with the eZNA plant RNA kit 
(Omega bio-tek). Reverse transcription was performed using M-MLV Reverse 
Transcriptase (Promega). Subsequently, quantitative real-time PCR was per-
formed using SsoFast EvaGreen Supermix kit (Bio-Rad) following the sup-
plier’s instruction. The primers used are listed in Supplementary Table 7.

Brassinazole treatment. Brassinazole treatment was carried out using a previ-
ously reported protocol30. Arabidopsis seeds were surface-sterilized with 70% 
ethanol for 1 min, followed by 10% bleach for 15 min. Seeds were washed 
three times with sterile water. Sterile seeds were sown on half-strength MS 
plates, which were wrapped with aluminum foil and placed in the dark at  
4 °C for 3 d. Afterwards, plates were unwrapped and placed horizontally in 
the light at 22 °C for 3 h. These plates were then wrapped with aluminum foil 
and placed back in dark at 22 °C for 20 h. Geminated seeds were transferred 
to fresh half-strength MS plates with 0, 0.2 or 0.8 µM brassinazole. These 
plates were wrapped with aluminum foil and placed horizontally in the dark at  
22 °C. After 8 d, the hypocotyl lengths of seedlings were measured and ana-
lyzed using ImageJ (https://imagej.nih.gov/ij/).

Agrobacterium-mediated transformation of lettuce and preparation of uORF 
mutants for LsGGP1 and LsGGP2. Iceberg lettuce (Lactuca sativa L. var. capitata) 
seeds were surface-sterilized with 70% ethanol for 1 min, followed by submer-
sion in 1.0% sodium hypochlorite solution for 15 min, and then sown on the MS 

medium solidified with 0.8% Bacto agar (BD) and supplemented with 3% sucrose. 
The plates were incubated under a photoperiod of 16 h light (150 µmol m−2 s−1) 
and 8 h dark at 25 °C for 7 d. The cotyledon explants were excised aseptically from 
germinated seedlings and placed upside down on the MS co-cultivation medium 
(supplemented with 30 g/l sucrose, 0.8% plant agar, 0.1 mg/l α-naphthalaneacetic 
acid, and 0.5 mg/l 6-benzylaminopurine) for 2 d. Then the explants were incubated 
for 10 min with the Agrobacterium (EHA105) suspension carrying the desired 
construct (pKSE401-LsGGP1uORF-sgRNA, pKSE401-LsGGP2uORF-sgRNA or 
the empty vector pKSE401). Following co-cultivation, excess Agrobacterium cells 
in the explants were removed with sterile filter paper. The treated explants were 
placed upside down on MS co-cultivation medium again and incubated at 25 °C 
in dark for 48 h. Afterwards, explants were transferred to MS selection medium 
(supplemented with 30 g/l sucrose, 0.8% plant agar, 0.1 mg/l α-naphthalaneace-
tic acid, 0.5 mg/l 6-benzylaminopurine, 40 mg/l kanamycin monosulfate, and  
250 mg/l carbenicilin), and incubated under a 16 h light (150 µmol m−2 s−1) and 
8 h dark cycle at 25 °C. After 15 d, calli (4-8 mm in diameter) were subcultured 
on fresh MS selection medium. 10 d later, calli with regenerated shoots were 
transferred to the MS selection medium containing reduced amounts of α-naph-
thalaneacetic acid (0.026 mg/l) and 6-benzylaminopurine (0.046 mg/l). When 
the shoots reached 3 cm, they were transferred to MS rooting medium (1/2 MS 
supplemented with 15 g/l sucrose, 0.1 mg/l 3-indole acetic acid, and 250 mg/l 
carbenicilin) for root induction. The plantlets with well-developed shoot and 
root were each examined for uORF mutations as described above.

Protein extraction and protein gel blot analysis. Protein was extracted from 
14-d-old Arabidopsis seedlings with an extraction buffer containing 50 mM 
Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% NP40, 4 M urea, and 1 mM PMSF. 
Protein gel blot analysis was performed with an anti-AtBRI1 antibody31 
(1:1,500 dilution) or an anti-PAG1 antibody32 (1:10,000 dilution). The sec-
ondary antibody was a goat anti-rabbit antibody conjugated to horseradish 
peroxidase, and reaction signals were visualized using an enhanced chemilu-
minescence solution (Millipore).

Measurement of ascorbic acid. Ascorbic acid concentration was measured 
using high-performance liquid chromatography (HPLC) following a previ-
ously published protocol33. In brief, leaf tissues were ground to powder in 
liquid nitrogen. The powder was solubilized using an extraction buffer, which 
contained 74.45 mg EDTA, 286.65 mg TCEP and 5 ml of 98% orthophosphoric 
acid in a final volume of 100 ml Milli-Q water. The suspension was vortexed 
for 30 s, followed by incubation at 25 °C for 2 min. Samples were then placed 
on ice for 10 min. Subsequently, they were centrifuged at 12,000 g at 4 °C for 
30 min, with the supernatant retained and filtered using 4 mm hydrophilic 
PTFE syringe filter. Filtered samples were assayed using Pursuit XRs C18 
A2000250X046 column (Agilent), and detected by ultraviolet (244 nm).

Oxidation stress tolerance assessment for lettuce mutant leaves. This assess-
ment, involving three repeated tests, was carried out using WT, uorfLsGGP1-1 
and uorfLsGGP2-3 plants. In each test, three leaves from three independent  
18-d-old plants were collected from each of the three genotypes, and placed 
into the petri dishes containing only water or 2.5 µM paraquat in water 
(Sigma). The treated leaves were incubated under continuous light for 24 h at 
25 °C to induce leaf bleaching by paraquat20. After 24 h, the leaves were placed 
on wet filter paper and imaged by a digital scanner, with the total and chlorotic 
areas in each leaf measured using the Image-J software (https://imagej.nih.
gov/ij/). Highly similar results were obtained from the three separate tests.

Analysis of potential off-target edits. The off-target candidates were predicted 
using the online tool Cas-OFFinder34. For the uORF mutants of AtBRI1, AtVTC2, 
LsGGP1 or LsGGP2, the transgene-free lines uorfAtBRI1-2, uorfAtVTC2-2, uorfLsGGP1-
1 or uorfLsGGP2-3 were used as representatives for the analysis. Three separate 
tests were performed using three different plants. Genomic DNA was extracted 
from the relevant plants, and amplified by the primers listed in Supplementary  
Table 7. The T7E1 assay was performed as previously reported21.

Statistical analysis. All numerical values were presented as means ± s.d. 
Statistical differences in between WT control and the relevant mutants were 
tested using two-tailed Student’s t test.
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Sample size All the experiments were performed with three biological repeats. And the sample size of hypocotyl growth measurement for each 
experiment was 32. For Arabidopsis and lettuce protoplast assay, about 500,000 protoplasts were used for each transfection. The number of 
mutants were confirmed by T7E1 assay and Sanger sequencing.

Data exclusions No data exclusion.

Replication All attempts at replication were successful.  A minimum of 3 biological reps were included.

Randomization The protoplasts of Arabidopsis and lettuce were  were isolated and randomly separated to each transformation. 

Blinding Samples were not blinded as the data did not require blinding.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials The following first and second antibodies were used in this immunoblot assay: rabbit anti-BRI1 (1:1500, from Qi Xie’s lab, 
Institute of Genetics and Developmental Biology, Chinese Academy of Science), rabbit anti-PAG (1:15000, from Qi Xie’s lab, 
Institute of Genetics and Developmental Biology, Chinese Academy of Science) and horseradish peroxidase conjugated goat-anti-
rabbit IgG (H+L) (1:2500, SA00001-2, Proteintech). These antibodies were validated in previous reports (Cui et al., 2012, Zhang et 
al., 2015).
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