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The deployment of heterosis in the form of hybrid rice varieties 
has boosted grain yield, but grain quality improvement still 
remains a challenge. Here we show that a quantitative trait 
locus for rice grain quality, qGW7, reflects allelic variation 
of GW7, a gene encoding a TONNEAU1-recruiting motif 
protein with similarity to C-terminal motifs of the human 
centrosomal protein CAP350. Upregulation of GW7 expression 
was correlated with the production of more slender grains, as 
a result of increased cell division in the longitudinal direction 
and decreased cell division in the transverse direction.  
OsSPL16 (GW8), an SBP-domain transcription factor that 
regulates grain width, bound directly to the GW7 promoter 
and repressed its expression. The presence of a semidominant 
GW7TFA allele from tropical japonica rice was associated with 
higher grain quality without the yield penalty imposed by the 
Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module 
thus represents a new strategy to simultaneously improve rice 
yield and grain quality.

Over the past 50 years, the two most substantial contributions to rice 
yield have been increased harvest index (the proportion of a plant’s 
aerial biomass that is represented by grain), achieved by deploy-
ing semidwarfness1,2, and the exploitation of heterosis3,4. However, 
improvements in grain quality still remains a major problem5, as 
this trait is a complex trait that is multiplicatively determined by 
appearance, cooking and eating quality, etc., all of which are control-
led by quantitative trait loci (QTLs) and influenced by environmen-
tal changes. Despite a great deal of research effort6–10, only a small 
number of relevant genes have been identified thus far11–13.

Shanyou63 is the most widely grown hybrid variety in China. Its 
parents are the restorer line Mnghui63 (MH63) and the cytoplas-
mic male sterility (CMS) line Zhenshan97A (ZS97A). Its grains are  
short and wide and are considered to be of only mediocre quality  
(Fig. 1a,b and Supplementary Fig. 1). In contrast, the hybrid formed 
by crossing MH63 and the newly developed CMS line TaifengA (TFA) 

produces long, slender grains with excellent quality (Fig. 1a,b and 
Supplementary Table 1). The two hybrids differ only marginally from 
one another with respect to grain yield components (Supplementary 
Fig. 2). To investigate the genetic basis of improved grain quality, 
we used an F2 population of 400 individuals developed from a cross 
between 2 maintainer lines (ZS97B and TFB) and identified 2 major 
grain width QTLs, termed qGW4 and qGW7, along with 3 major 
grain length QTLs (qGL3, qGL7 and qGL12) (Fig. 1c). Cosegregation 
in the BC1F2 generation derived from the backcross between  
TFB and ZS97B (with ZS97B as the recurrent parent) suggested  
that qGL3 mapped to the same locus as qGS3, and sequence com-
parison showed that TFA and TFB had the same loss-of-function  
gs3 allele as MH63 (ref. 14 and data not shown). Both qGW7  
and qGL7 mapped to the same region of chromosome 7 (Fig. 1c). 
Further genetic analysis of a BC2F2 population suggested that a  
semidominant qGW7 allele from TFB was responsible for grain  
slenderness (Supplementary Fig. 3).

Fine-scale mapping of qGW7 using 4,500 BC3F2 plants bred from 
the backcross between TFA and HJX74 (with HJX74 as the recurrent 
parent) allowed the position of the locus to be confined to a ~20-kb 
segment flanked by markers M1 and M10 (Fig. 1d). A progeny test 
of homozygous segregants further narrowed the interval to a ~2.6-kb 
region flanked by markers S5 and S6 (Fig. 1e); this stretch of DNA 
harbors the promoter region and exon 1 of the LOC_Os07g41200 
gene (Fig. 1f), hereafter referred to as GW7. The GW7 gene encodes 
a homolog of the Arabidopsis thaliana TONNEAU1 (TON1 (ref. 15))-
recruiting motif (TRM) proteins16 (Supplementary Fig. 4), and the 
encoded GW7 also shows homology to C-terminal motifs in the 
human centrosomal protein CAP350 (Supplementary Fig. 5)16,17.  
Sequence analysis showed that a set of 18 SNPs and 9 indels in the 
promoter region of GW7 differed between TFA and HJX74 (Fig. 1f 
and Supplementary Table 2).

The near-isogenic line NIL-GW7TFA is homozygous for the TFA 
qGW7 allele on an indica HJX74 background, whereas NIL-gw7HJX74 
is homozygous for the HJX74 allele. We compared the transcript levels 
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of GW7 in various organs during vegetative 
growth, reproductive development18,19 and the 
development of rice endosperms (Fig. 2a and 
Supplementary Figs. 6 and 7). Quantitative 
RT-PCR (qRT-PCR) analysis identified differ-
ences in GW7 transcript abundance between 
NIL-GW7TFA and NIL-gw7HJX74, with the 
gene being transcribed more strongly in 
NIL-GW7TFA than in NIL-gw7HJX74 during 
panicle development (Fig. 2a) and in the 
middle stages of rice endosperm development 
(Supplementary Fig. 7). Transgenic plants 
carrying a pGW7HJX74øGUS construct (with 
the GUS reporter gene under the control of 
the GW7 promoter from HJX74) showed a 
strong GUS signal in spikelet hulls (Fig. 2b). 
NIL-gw7HJX74 plants transgenic for the TFA 
GW7 cDNA whose expression was driven by 
its native promoter produced more slender 
grains than those formed for non-transgenic 
NIL-gw7HJX74 plants (Fig. 2c). Conversely, 
Transgenic NIL-GW7TFA plants that under-
went RNA interference (RNAi)-mediated  
silencing of GW7 formed shorter and wider grains than those  
formed by non-transgenic NIL-GW7TFA plants (Fig. 2c). Transgenic 
NIL-gw7HJX74 plants in which the HJX74 GW7 cDNA was constitu-
tively overexpressed formed grains that were substantially narrower 
and longer than those formed by non-transgenic NIL-GW7TFA plants 
(Fig. 2c). These results indicate that upregulation of GW7 promotes 
the formation of more slender grains.

Before fertilization, the spikelet hulls formed by NIL-gw7HJX74  
plants were shorter and wider than those formed by NIL-GW7TFA 
plants (Fig. 2d). An inspection of palea and lemma transverse  
sections showed that there were fewer inner parenchyma cells in 
NIL-GW7TFA than in NIL-gw7HJX74 (Fig. 2e,f). The average width  
of NIL-GW7TFA outer epidermal cells was slightly greater than that 
for NIL-gw7HJX74 cells (Fig. 2g and Supplementary Fig. 8a), but there 
was a ~6.4% decrease in transverse cell proliferation in NIL-GW7TFA 
spikelet hulls (Fig. 2h), indicating that the reduced grain width in  
NIL-GW7TFA results from decreased cell division in the transverse  
direction. Conversely, the average length of the NIL-GW7TFA outer 

epidermal cells was indistinguishable from that of NIL-gw7HJX74 cells  
(Fig. 2g and Supplementary Fig. 8b), whereas there was a ~6.5% 
increase in longitudinal cell proliferation in NIL-GW7TFA spikelet 
hulls (Fig. 2h). The implication of these findings is that the formation 
of slender grains results from increased cell division in the longitudi-
nal direction and decreased cell division in the transverse direction. 
Thus, GW7 appears to regulate grain shape by changing cell division 
patterns.

We next screened for GW7-interacting proteins by yeast two-hybrid 
assay with GW7 as bait and identified 18 candidates (Supplementary 
Table 3), including a rice homolog of TON1 (LOC_Os11g01170, here-
after OsTON1b) and a homolog of PP2A (also known as FASS or 
TON2; (LOC_Os05g05710, hereafter OsTON2))20. In Arabidopsis, 
TRM1, which is synonymous with LONGIFOLIA2 (LNG2)21, has 
been identified as targeting TON1, a protein that is similar to the 
human centrosomal protein FOP22, to cortical microtubules16,17. 
Recently, a TTP (TON1-TRM-PP2A) protein complex has been 
described to be involved in preprophase band formation and the 
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Figure 1 Positional cloning of qGW7. (a) Grains 
from the parents of indica hybrid rice lines. 
Scale bar, 2 mm. (b) Grain chalkiness of the  
two hybrid combinations (ZS97A × MH63 and 
TFA × MH63). (c) QTL locations for grain width 
and grain length. LOD, logarithm of odds.  
(d) qGW7 was mapped to a ~20-kb genomic DNA 
region between markers M1 and M10 using 
4,500 BC3F2 plants. The numbers below the  
bar indicate the number of recombinants  
between qGW7 and the molecular markers  
shown. (e) Genotyping of progeny homozygous for 
qGW7 delimited the locus to a ~2.6-kb stretch 
flanked by markers S5 and S6. Grain width is 
shown for recombinant BC4F3 plants (L1–L4)  
and the parental plant. Filled and open bars 
represent chromosomal segments homozygous  
for, respectively, the TFA and HJX74 alleles.  
Data are shown as means ± s.e.m. (n = 60).  
(f) Allelic variation in the candidate gene  
LOC_Os07g41200 (GW7) between TFA and HJX74.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature GeNetics  VOLUME 47 | NUMBER 8 | AUGUST 2015 951

l e t t e r s

spatial control of cell division in plants23. Bimolecular fluorescence 
complementation (BiFC) assays showed that GW7 could interact with 
both OsTON2 and OsTON1b and that OsTON2 also interacted with 
OsTON1b (Fig. 2i). Similarly to the Arabidopsis TTP protein com-
plex, the M2 and M3 motifs of GW7 were involved in interaction 
with OsTON1b and OsTON2, respectively (Supplementary Fig. 9), 
suggesting that interactions within the TTP complex are conserved 
between Arabidopsis and rice. Moreover, transgenic Arabidopsis plants 
constitutively overexpressing TFA GW7 cDNA under the control of 
the cauliflower mosaic virus (CaMV) 35S promoter had increased 
longitudinal polar cell elongation, as manifested by long and narrow 
leaf blades (Fig. 2j,k), a phenotype that was indistinguishable from 
those of p35SøLNG1 and p35SøLNG2 plants21.

We quantified the effect of allelic variation at the GW7 locus on 
rice yield and grain quality in a field trial of NIL-gw7HJX74 and NIL-
GW7TFA plants grown under normal cultivation conditions12,24. The 
two NILs did not differ from one another with respect to heading date, 
plant height, the number of tillers per plant and the number of grains 
per panicle (Fig. 3a–e), but their grain shapes were clearly distinct 
(Fig. 3f–h). The width of the NIL-GW7TFA grain was ~6.0% less and 
its length was ~5.9% greater in comparison to NIL-gw7HJX74 grain, 
resulting in the formation of a more slender grain (Figs. 2c and 3h).  
Upregulation of GW7 slightly decreased the grain-filling rate (Fig. 3i),  
increased the transcript levels of several starch synthesis genes in  

developing rice endosperms (Supplementary Fig. 10) and substantially 
enhanced rice grain appearance quality (Supplementary Table 4),  
consistent with the observed improvement of rice endosperm chalk-
iness (Supplementary Fig. 11). It has been reported previously 
that the gw8Basmati allele found in Basmati rice, encoding the SBP 
(SQUAMOSA PROMOTER–BINDING PROTEIN)-domain tran-
scription factor OsSPL16, is associated with the formation of more 
slender grains and better grain quality12, but this allele is also asso-
ciated with a ~14% penalty in grain yield (Fig. 3j,k). In contrast,  
there was little difference between NIL-gw7HJX74 and NIL-GW7TFA 
plants with respect to grain weight and overall grain yield per plant 
(Fig. 3j,k). These results indicate that the semidominant GW7TFA 
allele is associated with the formation of more slender grains  
and better quality as well as the advantage in grain yield over the 
Basmati gw8 allele.

The transcript abundance of GW7 in NIL-gw8Basmati increased over 
the course of panicle development when compared to NIL-GW8HJX74, 
whereas GW7 expression was substantially reduced in transgenic  
NIL-gw8Basmati plants that had upregulation of OsSPL16 or RNAi-
mediated silencing of GW7 (Fig. 4a), suggesting that GW7 expres-
sion is negatively regulated by OsSPL16. Furthermore, transgenic  
NIL-gw8Basmati plants with either upregulation of OsSPL16 or down-
regulation of GW7 formed wider and shorter grains than those formed 
by non-transgenic NIL-gw8Basmati plants (Fig. 4b). The inference 
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from these findings is that GW7 must act downstream of OsSPL16. 
Chromatin immunoprecipitation (ChIP) and electrophoretic  
mobility shift assay (EMSA) analyses demonstrated that OsSPL16 

was able to bind the GW7 promoter in vivo and in vitro (Fig. 4c,d). 
Further EMSA experiments showed that OsSPL16 was able to  
bind the GTAC25 motifs of the F8 fragment in the promoter  
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means ± s.e.m. (n = 3). (b) Grain shape.  
Scale bar, 2 mm. (c) ChIP assays. The diagram  
depicts the regions used for ChIP-PCR 
analysis of extracts from young panicles 
of NIL-gw8Basmati plants carrying the 
pActinøMyc-OsSPL16 construct. ChIP-PCR 
results were quantified by normalization of 
the Myc immunoprecipitation signal by the 
corresponding input signal. Data are shown  
as means ± s.e.m. (n = 3). (d) EMSA  
analysis. Competition for OsSPL16 binding  
was performed with cold probe containing the  
GTAC motifs at 10×, 20×, 30× and 50× the  
amount of labeled probe. (e) OsSPL16 represses 
transcription of the GW7 gene promoter.  
Relative luciferase activity was monitored in  
rice protoplasts cotransfected with different 
effector and reporter constructs. Mock, 
cotransfected with reporter construct and an 
empty effector construct; control, cotransfected 
with effector construct and an empty reporter 
construct (set to 1). Data are shown as means  
± s.e.m. (n = 3). Student’s t tests were used  
to generate the P values. (f) Variations in the  
F8 fragment between the HJX74 and TFA 
alleles. The red box highlights the GTAC  
motifs. (g) Yeast one-hybrid assays. The 0.5-
kb and 1.0-kb DNA fragments upstream of 
the GW7 transcription start site were used 
to construct lacZ expression vectors32. 
Data are shown as means ± s.e.m. (n = 3). 
The pB42AD and pLacZi2µ empty vectors, 
pB42ADøOsSPL16 and the pLacZi2µ empty 
vector, and pgw7HJX74 (1.0 kb)ølacZ and the 
pB42AD empty vector were used as the negative control (control 1), control 2 and control 3, respectively. The presence of the same lowercase letter 
denotes a non-significant difference between the means (P > 0.05).
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region of GW7, whereas mutations of GTAC to ATAC abolished  
its affinity (Supplementary Fig. 12).

We further used the rice protoplast transient expression assay sys-
tem to analyze the effect of OsSPL16 on the expression of a reporter 
construct containing the 2-kb GW7 promoter fragment fused with the 
firefly luciferase coding sequence (LUC). We could detect luciferase 
activity in the cells expressing pGW7HJX74øLUC, but coexpression of 
pGW7HJX74øLUC with the p35SøOsSPL16 construct led to a reduc-
tion in luciferase activity (Fig. 4e), indicating that OsSPL16 func-
tions as a transcriptional repressor. In contrast, ectopic expression 
of OsSPL16 did not effectively repress pGW7TFAøLUC expression 
in the transient expression assay (Fig. 4e). Among the three binding 
sites for OsSPL16 in the GW7 promoter (Fig. 4c), the GTAC motifs 
in the GW7TFA allele were in close proximity to an 11-bp deletion 
and 18-bp insertion located in the F8 fragment (Fig. 4f), and yeast 
one-hybrid assays demonstrated that these variations were associated 
with the binding activity of OsSPL16 to the GW7 promoter (Fig. 4g 
and Supplementary Fig. 13). Although the gw8Basmati allele resulted 
in the upregulation of GW7 (Fig. 4a), the size and shape of the grains 
produced by NIL-GW7TFA-gw8Basmati plants were similar to those for 
grains formed by NIL-GW7TFA-GW8HJX74 plants (Supplementary 
Fig. 14). These results suggest that OsSPL16 controls grain shape via 
repression of GW7.

Pedigree records show that TFA and TFB were derived from the 
tropical japonica rice variety Mi31, and a resequencing study showed 
that the TFA haplotype involving an 11-bp deletion and an 18-bp 
insertion was common across tropical japonica germplasm but was 
unrepresented among high-yielding indica cultivars (Supplementary 
Table 5), indicating that this TFA haplotype has not yet been selected 
in indica rice breeding programs. The gs3 allele, which proved to be a 
major determinant of grain length in TFA (Fig. 1c), has been widely 
used in indica rice breeding14. To test the potential of combining 
beneficial alleles to improve grain quality and/or yield, we generated 
NILs carrying various combinations of alleles at the qGS3 and qGW7 
loci on the HJX74 background. NIL-gs3-gw7HJX74 plants formed 
more slender grains than those formed by NIL-GS3-GW7TFA plants, 
whereas NIL-gs3-GW7TFA plants produced much longer grains than 
either NIL-GS3-GW7TFA or NIL-gs3-gw7HJX74 plants (Supplementary 
Fig. 15). Over three successive years of field trials, NIL-gs3-GW7TFA 
plants were ~10.7% more productive than NIL-gs3-gw7HJX74 plants, 
whereas NIL-gs3-GW7TFA plants demonstrated a ~12.6% advantage 
in grain yield over HJX74 (NIL-GS3-gw7HJX74) plants (Table 1), 
with substantial improvements in grain quality also being achieved 
(Supplementary Table 6). Thus, the combination of the GW7TFA and 
gs3 alleles provides a new strategy for simultaneously improving rice 
yield and grain quality over what is currently achievable. Consistent 
with this notion, we have used QTL pyramiding of the GW7TFA  
and gs3 alleles and developed new high-yielding indica hybrid 

rice varieties (for example, Taifengyou55 and Taifengyou208) with  
substantially improved grain quality.

In summary, our results suggest that allelic variants of the GW7 
gene regulate grain size and shape in rice, and our findings provide 
new insights into the role of SBP-domain transcription factors in 
the spatial control of plant cell division. The expression of OsSPL16 
is already known to be controlled by OsmiR156 (refs. 12,26); thus, 
manipulation of the OsmiR156-OsSPL16-GW7 regulatory module 
opens the way to breeding simultaneously for higher grain yield and 
better grain quality in rice.

METHOdS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHOdS
Plant materials and growing conditions. NIL-GW7TFA plants were gen-
erated by backcrossing the hybrid TFA × HJX74 line and further six times  
with HJX74. Contrasting allelic combinations of the qGW7 and qGS3 loci  
were assembled on the HJX74 background using NIL-GS3-GW7TFA and  
NIL-gs3-gw7HJX74 plants12. Details of the germplasm used for the sequence 
diversity analysis have been provided elsewhere12,24. Field-grown NIL plants 
were raised in a rice paddy at an interplant spacing of 20 × 20 cm during the  
standard growing season at three experimental stations, located in Lingshui 
(Hainan Province), Hefei (Anhui Province) and Beijing. The primer sequences 
for the genotyping assays are provided in Supplementary Table 7.

Positional cloning of qGW7. Fine-scale mapping of qGW7 was based on 4,500 
BC3F2 plants bred from the backcross between TFA and an indica variety, 
HJX74 (with HJX74 as the recurrent parent). The genomic DNA sequence 
in the GW7 candidate region was compared between TFA and HJX74.  
A list of the markers used for QTL analysis and positional cloning is given  
in Supplementary Table 7.

Transgene constructs. The GW7 coding sequence together with the 2-kb 
region upstream of the transcription start site and the 1-kb region down-
stream of the termination site was amplified from TFA and inserted into the 
pCAMBIA1300 vector (CAMBIA) to generate a pGW7TFAøGW7TFA expres-
sion cassette. A 406-bp cDNA fragment of GW7 was amplified from TFA 
and used to generate the pActinøRNAi-GW7TFA transgene. To construct the 
pUbiøgw7HJX74 vector, the HJX74 GW7 cDNA was amplified and inserted into 
the pUbiønos vector24. To construct pGW7HJX74øGUS, a 2-kb DNA fragment 
comprising the HJX74 GW7 promoter sequence was amplified and inserted 
into the pCAMBIA1301-GUS-nos vector12. Transgenic plants were generated 
by Agrobacterium-mediated transformation27. Relevant PCR primer sequences 
are given in Supplementary Table 8.

Quantitative RT–PCR analysis. Total RNA was extracted from plant  
tissues using TRIzol reagent (Invitrogen) and treated with RNase-free  
DNase I (Invitrogen) according to the manufacturer’s protocol. To gener-
ate qRT-PCR template, the resulting RNA was reverse transcribed using  
the M-MLV Reverse Transcriptase kit (Promega). qRT-PCR was performed  
as described previously28; each qRT-PCR assay was replicated at least  
three times with three independent RNA preparations, and rice Actin3  
was used as a reference. Relevant PCR primer sequences are given in 
Supplementary Table 8.

ChIP-PCR assays. An ~2- to 3-g aliquot from 4-week-old transgenic  
pUbiøMyc-GW7 rice plants was fixed by formaldehyde cross-linking and 
subjected to a ChIP assay based on an antibody to Myc (9E10, Santa Cruz 
Biotechnology) as described previously29. Enrichment of DNA fragments was 
determined using qRT-PCR analysis performed on three biological replicates. 
The relevant primer sequences are shown in Supplementary Table 9.

EMSA analysis. The OsSPL16 coding sequence was amplified from TFA  
and cloned into the pGEX-4T-1 vector (GE Healthcare). GST and GST-
OsSPL16 fusion proteins were purified according to the manufacturer’s 
protocol. DNA probes were amplified and labeled using a biotin labeling 
kit (Invitrogen). DNA gel shift assays were performed using the LightShift 

Chemiluminescent EMSA kit (Thermo Fisher Scientific). The relevant  
primer sequences are given in Supplementary Table 10.

Transactivation analysis. Transactivation analysis in rice protoplasts was 
performed as described elsewhere30. The 2-kb DNA fragment comprising 
the GW7 promoter was amplified from either TFA or HJX74 and used to 
generate reporter plasmids that contained the GW7 promoter and the luci-
ferase gene. Full-length cDNA for OsSPL16 was amplified from HJX74, 
fused to the sequence encoding GAL4BD and inserted into pRT107 vector to 
generate the effector plasmid pRTBD-OsSPL16. Luciferase assays were per-
formed as described elsewhere30. Relevant PCR primer sequences are given 
in Supplementary Table 8.

BiFC assays. The GW7 coding sequence was amplified form TFA and inserted 
into the pSY735 vector31. Full-length cDNAs for OsTON1b and OsTON2 were 
amplified from TFA and subcloned into the pSY736 vector31. Arabidopsis pro-
toplasts were prepared, transfected and visualized as described elsewhere24. 
Relevant PCR primer sequences are given in Supplementary Table 8.

Yeast one-hybrid assays. HJX74 OsSPL16 cDNA was inserted into the unique 
EcoRI and XhoI sites of the pB42AD vector (Takara). The 0.5-kb and 1.0-kb 
DNA fragments corresponding to the GW7 promoter were amplified from either 
TFA or HJX74 and subcloned into the pLacZi2µ vector32 to drive lacZ reporter 
gene expression. The constructs were transformed into yeast strain EGY48; 
experimental procedures were performed according to the manufacturer’s user 
guide. β-galactosidase activity was assayed by hydrolysis of ortho-nitrophenyl- 
β-d-galactopyranoside (ONPG), also measuring the absorbance for the released 
ortho-nitrophenyl (ONP) compound, on a spectrophotometer at 415 nm. 
Relevant PCR primer sequences are given in Supplementary Table 8.

Yeast two-hybrid assays. Yeast two-hybrid assays were performed as described 
elsewhere24. The full-length cDNAs for OsTON1b and OsTON2 were amplified 
and subcloned into pGBKT7 vector (Takara), and the full-length GW7 coding 
sequence as well as sequences encoding N-terminal and C-terminal truncated 
deletions were inserted into the pGADT7 vector (Takara). The vectors were 
transformed into yeast strain AH109. The GW7 protein was used as bait to 
screen a cDNA library prepared from equal amounts of poly(A)-containing 
RNAs from various rice samples, including seedlings, roots, leaves, stems and 
young panicles, among others. Experimental procedures for screening and 
plasmid isolation were performed according to the manufacturer’s user guide. 
Primer sequences are provided in Supplementary Table 8.
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